三角函数的图象与性质(教案)

三角函数的图象与性质(教案)

ID:4134353

大小:845.00 KB

页数:14页

时间:2017-11-29

三角函数的图象与性质(教案)_第1页
三角函数的图象与性质(教案)_第2页
三角函数的图象与性质(教案)_第3页
三角函数的图象与性质(教案)_第4页
三角函数的图象与性质(教案)_第5页
资源描述:

《三角函数的图象与性质(教案)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、§1.4三角函数的图象和性质教学目的:(一)1.理解并掌握作正弦函数和余弦函数图象的方法;2.理解并熟练掌握用五点法作正弦函数和余弦函数简图的方法;3.理解并掌握用正弦函数和余弦函数的图象解最简单的三角不等式的方法.(二)1.理解正、余弦函数的定义域、值域、最值、周期性、奇偶性的意义;2.会求简单函数的定义域、值域、最小正周期和单调区间;3.会求简单函数的奇偶性.(三)1.理解并掌握作正切函数和余切函数图像的方法;2.理解并掌握用正切函数和余切函数的图像解最简三角不等式的方法;3.掌握正切函数的性质

2、和性质的简单应用;4.会解决一些实际问题.教学重点:1.用单位圆中的正弦线作正弦、正切函数的图象;2.正、余弦和正切函数的性质.教学难点:1.用单位圆中的余弦线作余弦、正切函数的图象;2.正、余弦和正切函数性质的理解与应用.教学过程:一、复习引入:1.弧度定义:长度等于半径长的弧所对的圆心角称为弧度的角.2.正、余弦函数定义:设是一个任意角,在的终边上任取(异于原点的)一点,与原点的距离()则比值叫做的正弦记作比值叫做的余弦记作比值叫做的正切记作3.三角函数线:根据正弦,余弦,正切的定义,则有,,这

3、三条与单位圆有关的有向线段分别叫做角的正弦线,余弦线,正切线.当角的终边落在轴上时,与重合,与重合,此时正弦线,正切线分别变成一个点;当角的终边在轴上时,与重合,余弦线变成一个点,过的切线平行于轴,不能与角的终边相交,所以正切线不存在,此时角的正切值不存在.二、讲解新课:(一)正弦函数、余弦函数的图象1.用单位圆中的正弦线、余弦线作正弦函数、余弦函数的图象(几何法):为了作三角函数的图象,三角函数的自变量要用弧度制来度量,使自变量与函数值都为实数.在一般情况下,两个坐标轴上所取的单位长度应该相同,否

4、则所作曲线的形状各不相同,从而影响初学者对曲线形状的正确认识.正弦函数的图象第一步,在直角坐标系的轴上任取一点,以为圆心作单位圆,从这个圆与轴的交点起把圆分成(这里)等份.把轴上从到这一段分成(这里)等份.(预备:取自变量值—弧度制下角与实数的对应).第二步,在单位圆中画出对应于角,,,,…,的正弦线正弦线(等价于“列表”).把角的正弦线向右平行移动,使得正弦线的起点与轴上相应的点重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点”).第三步,连线.用光滑曲线把这些正弦线的终点连结起来,就得到

5、正弦函数,的图象.根据终边相同的同名三角函数值相等,把上述图象沿着轴向右和向左连续地平行移动,每次移动的距离为,就得到,的图象.把角的正弦线平行移动,使得正弦线的起点与轴上相应的点重合,则正弦线的终点的轨迹就是正弦函数的图象.余弦函数的图象用几何法作余弦函数的图象,可以用“反射法”将角的余弦线“竖立”.把坐标轴向下平移,过作与轴的正半轴成角的直线,又过余弦线的终点作轴的垂线,它与前面所作的直线交于,那么与长度相等且方向同时为正,我们就把余弦线“竖立”起来成为,用同样的方法,将其它的余弦线也都“竖立”

6、起来,再将它们平移,使起点与轴上相应的点重合,则终点就是余弦函数图象上的点.也可以用“旋转法”把角的余弦线“竖立”(把角的余弦线按逆时针方向旋转到位置,则与长度相等,方向相同.)根据诱导公式,还可以把正弦函数的图象向左平移单位即得余弦函数的图象.正弦函数的图象和余弦函数的图象分别叫做正弦曲线和余弦曲线.2.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数,的图象中,五个关键点是:余弦函数,的图像中,五个关键点是:只要这五个点描出后,图象的形状就基本确定了.因此在精确度不太高时,常采用五点法作正

7、弦函数和余弦函数的简图,要求熟练掌握.(二)正弦函数、余弦函数的性质1.定义域正弦函数、余弦函数的定义域都是实数集(或).2.值域(1)值域因为正弦线、余弦线的长度不大于单位圆的半径的长度,所以,即也就是说,正弦函数、余弦函数的值域都是.(2)最值正弦函数①当且仅当时,取得最大值②当且仅当时,取得最小值余弦函数①当且仅当时,取得最大值②当且仅当时,取得最小值3.周期性由知:正弦函数值、余弦函数值是按照一定规律不断重复地取得的.定义:对于函数,如果存在一个非零常数,使得当取定义域内的每一个值时,都有,

8、那么函数就叫做周期函数,非零常数叫做这个函数的周期.由此可知,都是这两个函数的周期.对于一个周期函数,如果在它所有的周期中存在一个最小的正数,那么这个最小正数就叫做的最小正周期.根据上述定义,可知:正弦函数、余弦函数都是周期函数,都是它的周期,最小正周期是.4.奇偶性由可知:()为奇函数,其图象关于原点对称()为偶函数,其图象关于轴对称5.对称性正弦函数的对称中心是,对称轴是直线;余弦函数的对称中心是,对称轴是直线(正(余)弦型函数的对称轴为过最高点或最低点且垂直于轴

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。