Wavelet Neural Networks for Function Learning - 1995

Wavelet Neural Networks for Function Learning - 1995

ID:41237078

大小:1.14 MB

页数:13页

时间:2019-08-20

Wavelet Neural Networks for Function Learning - 1995_第1页
Wavelet Neural Networks for Function Learning - 1995_第2页
Wavelet Neural Networks for Function Learning - 1995_第3页
Wavelet Neural Networks for Function Learning - 1995_第4页
Wavelet Neural Networks for Function Learning - 1995_第5页
资源描述:

《Wavelet Neural Networks for Function Learning - 1995》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、IEEETRANSACTIONSONSIGNALPROCESSING,VOL.43,NO.6.JUNE19951485WaveletNeuralNetworksforFunctionLearningJunZhang,Member,IEEE,GilbertG.Walter,YuboMiao,andWanNgaiWayneLee,Member,IEEEAbshurct-Inthispaper,awavelet-basedneuralnetworkisnetworkscanbemucheasierthanMPLnetworks.Hence,describe

2、d.Thestructureofthisnetworkissimilartothatofthetherehasbeenconsiderableinterestintheimplementationofradialbasisfunction(RBF)network,exceptthatheretheradialRBFnetworks[3]-[5](alsoseethereferencesin[8])andthebasisfunctionsarereplacedbyorthonormalscalingfunctionsthattheoreticalana

3、lysisoftheirproperties,suchasapproximationarenotnecessarilyradial-symmetric.Theefficacyofthistypeofnetworkinfunctionlearningandestimationisdemonstratedabilityandconvergencerates[6]-[ti].throughtheoreticalanalysisandexperimentalresults.Inpartic-Fromthepointofviewoffunctionrepres

4、entation,anRBFular,ithasbeenshownthatthewaveletnetworkhasuniversalnetworkisaschemethatrepresentsafunctionofinterestbyandL2approximationpropertiesandisaconsistentfunctionusingmembersofafamilyofcompactly(orlocally)supportedestimator.Convergenceratesassociatedwiththesepropertiesba

5、sisfunctions.Thelocalityofthebasisfunctionsmakesareobtainedforcertainfunctionclasseswheretheratesavoidthe“curseofdimensionality.”Intheexperiments,thewavelettheIU3FnetworkmoresuitableinlearningfunctionswithnetworkperformedwellandcomparedfavorablytotheMLPlocalvariationsanddiscont

6、inuities.Furthermore,theRBFandRBFnetworks.networkscanrepresentanyfunctionthatisinthespacespannedbythefamilyofbasisfunctions.However,thebasisI.INTRODUCTIONfunctionsinthefamilyaregenerallynotorthogonalandareredundant.Thismeansthatforagivenfunction,itsRBFEVELOPINGMODELSfromobserve

7、ddata,orfunc-Dnetworkrepresentationisnotuniqueandisprobablynottionlearning,isafundamentalprobleminmanyfields,themostefficient.Inthiswork,wereplacethefamilyofsuchasstatisticaldataanalysis,signalprocessing,control,basisfunctionsfortheRBFnetworkbyanorthonormalbasis,forecasting,and

8、artificialintelligence.Thisproblemisalsonamely,thescal

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。