Information Geometry of the EM and em Algorithms for Neural Networks (1995)

Information Geometry of the EM and em Algorithms for Neural Networks (1995)

ID:41189523

大小:476.86 KB

页数:85页

时间:2019-08-18

Information Geometry of the EM and em Algorithms for Neural Networks (1995)_第1页
Information Geometry of the EM and em Algorithms for Neural Networks (1995)_第2页
Information Geometry of the EM and em Algorithms for Neural Networks (1995)_第3页
Information Geometry of the EM and em Algorithms for Neural Networks (1995)_第4页
Information Geometry of the EM and em Algorithms for Neural Networks (1995)_第5页
资源描述:

《Information Geometry of the EM and em Algorithms for Neural Networks (1995)》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、InformationGeometryoftheEMandemAlgorithmsforNeuralNetworksShun-ichiAmariDepartmentofMathematicalEngineeringandInformationPhysicsFacultyofEngineering,UniversityofTokyoBunkyo-ku,Tokyo113,JAPANThepresentworkissupportedinpartbyGrant-in-AidforScienti cRes

2、earchonPriorityAreasontheHigher-OrderBrainFunctionsfromtheMinistryofEducation,ScienceandCultureofJapan.RequestsforreprintsshouldbesenttotheauthorattheDepartmentofMathematicalEngineering,theUniversityofTokyo,Bunkyo-ku,Hongo,Tokyo113,Japan:fax+81-3-568

3、9-5752.runningtitle:GeometryofEMAlgorithmInformationGeometryoftheEMandemAlgorithmsforNeuralNetworksShun-ichiAmariAbstractInordertorealizeaninput-outputrelationgivenbynoise-contaminatedexam-ples,itise ectivetouseastochasticmodelofneuralnetworks.Amodel

4、networkincludeshiddenunitswhoseactivationvaluesarenotspeci ednorobserved.Itisusefultoestimatethehiddenvariablesfromtheobservedorspeci edinput-outputdatabasedonthestochasticmodel.Twoalgorithms,theEM-andem-algorithms,havesofarbeenproposedforthispurpose

5、.TheEM-algorithmisaniterativesta-tisticaltechniqueofusingtheconditionalexpectation,andtheem-algorithmisageometricalonegivenbyinformationgeometry.Theem-algorithmminimizesiter-ativelytheKullback-Leiblerdivergenceinthemanifoldofneuralnetworks.Thesetwoal

6、gorithmsareequivalentinmostcases.Thepresentpapergivesauni edinformationgeometricalframeworkforstudyingstochasticmodelsofneuralnet-works,byforcussingontheEMandemalgorithms,andprovesaconditionwhichguaranteestheirequivalence.Examplesinclude1)Boltzmannma

7、chineswithhid-denunits,2)mixturesofexperts,3)stochasticmultilayerperceptron,4)normalmixturemodel,5)hiddenMarkovmodel,amongothers.keywords:EMalgorithm,informationgeometry,stochasticmodelofneuralnet-works,learning,identi cationofneuralnetwork,e-project

8、ion,m-projection,hiddenvari-able11IntroductionNeuralnetworkshavebeenremarkedasuniversalapproximatorsofnonlinearfunctionsthatcanbetrainedfromexamplesofinput-outputdata.Whenthedataincludesnoise,theinput-outputrelationisdescribedstochasticallyintermsoft

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。