欢迎来到天天文库
浏览记录
ID:14201263
大小:75.91 KB
页数:12页
时间:2018-07-26
《data mining neural networks with genetic algorithms》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、DataminingneuralnetworkswithgeneticalgorithmsAjitNarayanan,EdwardKeedwellandDraganSavicSchoolofEngineeringandComputerScienceUniversityofExeterExeterEX44PTUnitedKingdomajit@dcs.ex.ac.uktel:(+)1392264064AbstractItisanopenquestionastowhatisthebestwaytoextractsymbolicrulesfromtrainedneuralnetwork
2、sindomainsinvolvingclassification.Previousapproachesbasedonanexhaustiveanalysisofnetworkconnectionandoutputvalueshavealreadybeendemonstratedtobeintractableinthatthescale-upfactorincreasesexponentiallywiththenumberofnodesandconnectionsinthenetwork.Anovelapproachusinggeneticalgorithmstosearchfo
3、rsymbolicrulesinatrainedneuralnetworkisdemonstratedinthispaper.Preliminaryexperimentsinvolvingclassificationarereportedhere,withtheresultsindicatingthatourproposedapproachissuccessfulinextractingrules.Whileitisacceptedthatfurtherworkisrequiredtoconvincinglydemonstratethesuperiorityofourapproa
4、choverothers,thereisneverthelesssufficientnoveltyintheseresultstojustifyearlydissemination.(Ifthepaperisaccepted,thelatestresultswillbereported,togetherwithsufficientinformationtoaidreplicabilityandverification.)IntroductionArtificialneuralnetworks(ANNs)areincreasinglyusedinproblemdomainsinvo
5、lvingclassification.Theyareadeptatfindingcommonalitiesinasetofseeminglyunrelateddataandforthisreasonareusedinagrowingnumberofclassificationtasks.Unfortunately,acommonlyperceivedproblemwithANNswhenusedforclassificationisthat,whileatrainedANNcanindeedclassifythedata,sometimeswithmoreaccuracytha
6、natraditional,symbolicmachinelearningapproach,thereasonsfortheirclassificationcannotbefoundeasily.TrainedANNsarecommonlyperceivedtobe‘blackboxes’whichmapinputdataontoaclassthroughanumberofmathematicallyweightedconnectionsbetweenlayersofneurons.WhiletheideaofANNsasblackboxesmaynotbeaproblemina
7、pplicationswherethereislittleinterestinthereasonsbehindclassification,thiscanbeamajorobstacleinapplicationswhereitisimportanttohavesymbolicrulesorotherformsofknowledgestructure,suchasidentificationordecisiontrees,whichareeasilyinterpretableby
此文档下载收益归作者所有