Reducing the Dimensionality of Data with Neural Networks.pdf

Reducing the Dimensionality of Data with Neural Networks.pdf

ID:34606434

大小:428.82 KB

页数:10页

时间:2019-03-08

Reducing the Dimensionality of Data with Neural Networks.pdf_第1页
Reducing the Dimensionality of Data with Neural Networks.pdf_第2页
Reducing the Dimensionality of Data with Neural Networks.pdf_第3页
Reducing the Dimensionality of Data with Neural Networks.pdf_第4页
Reducing the Dimensionality of Data with Neural Networks.pdf_第5页
资源描述:

《Reducing the Dimensionality of Data with Neural Networks.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、www.sciencemag.org/cgi/content/full/313/5786/504/DC1SupportingOnlineMaterialforReducingtheDimensionalityofDatawithNeuralNetworksG.E.Hinton*andR.R.Salakhutdinov*Towhomcorrespondenceshouldbeaddressed.E-mail:hinton@cs.toronto.eduPublished28July2006,Scienc

2、e313,504(2006)DOI:10.1126/science.1127647ThisPDFfileincludes:MaterialsandMethodsFigs.S1toS5MatlabCodeSupportingOnlineMaterialDetailsofthepretraining:TospeedupthepretrainingofeachRBM,wesubdividedalldatasetsintomini-batches,eachcontaining100datavectorsan

3、dupdatedtheweightsaftereachmini-batch.Fordatasetsthatarenotdivisiblebythesizeofaminibatch,theremainingdatavectorswereincludedinthelastminibatch.Foralldatasets,eachhiddenlayerwaspretrainedfor50passesthroughtheentiretrainingset.Theweightswereupdatedafter

4、eachmini-batchusingtheaveragesinEq.1ofthepaperwithalearningrateof.Inaddition,timesthepreviousupdatewasaddedtoeachweightand timesthevalueoftheweightwassub-tractedtopenalizelargeweights.Weightswereinitializedwithsmallrandomvaluessampl

5、edfromanormaldistributionwithzeromeanandstandarddeviationof .TheMatlabcodeweusedisavailableathttp://www.cs.toronto.edu/hinton/MatlabForSciencePaper.htmlDetailsofthefine-tuning:Forthefine-tuning,weusedthemethodofconjugategradientsonlargerminibatchesco

6、ntaining1000datavectors.WeusedCarlRasmussen's“minimize”code(1).Threelinesearcheswereperformedforeachmini-batchineachepoch.Todetermineanadequatenumberofepochsandtocheckforoverfitting,wefine-tunedeachautoencoderonafractionofthetrainingdataandtesteditsperfo

7、rmanceontheremainder.Wethenrepeatedthefine-tuningontheentiretrainingset.Forthesyntheticcurvesandhand-writtendigits,weused200epochsoffine-tuning;forthefacesweused20epochsandforthedocumentsweused50epochs.Slightoverfittingwasobservedforthefaces,buttherewasno

8、overfittingfortheotherdatasets.Overfittingmeansthattowardstheendoftraining,thereconstructionswerestillimprovingonthetrainingsetbutweregettingworseonthevalidationset.Weexperimentedwithvariousvaluesofthelearningrate,momentum,andweight-decay

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。