第一章 导数及其应用

第一章 导数及其应用

ID:41007802

大小:5.12 MB

页数:62页

时间:2019-08-13

第一章 导数及其应用_第1页
第一章 导数及其应用_第2页
第一章 导数及其应用_第3页
第一章 导数及其应用_第4页
第一章 导数及其应用_第5页
资源描述:

《第一章 导数及其应用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、第一章导数及其应用(一)课标要求1.导数及其应用(1)导数概念及其几何意义①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见选修1-1案例中的例2、例3)。②通过函数图象直观地理解导数的几何意义。(2)导数的运算①能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x,y=的导数。②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax+b))的导数。

2、③会使用导数公式表。(3)导数在研究函数中的应用①结合实例,借助几何直观探索并了解函数的单调性与导数的关系(参见选修1-1案例中的例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。②结合函数的图象,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。(4)生活中的优化问题举例。例如,通过使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问

3、题中的作用。(参见选修1-1案例中的例5)(5)定积分与微积分基本定理①通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。②通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。(参见例1)(6)数学文化收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本标准中“数学文化”的要求。(参见第91页)(二)教学内容及课时安排(约24

4、课时)62(1)导数概念及其几何意义(2)导数的运算(3)导数在研究函数中的应用(4)生活中的优化问题举例。(5)定积分与微积分基本定理(6)数学文化§1.1.1变化率问题教学目标:1.理解平均变化率的概念;2.了解平均变化率的几何意义;3.会求函数在某点处附近的平均变化率教学重点:平均变化率的概念、函数在某点处附近的平均变化率;教学难点:平均变化率的概念.教学过程:一.创设情景为了描述现实世界中运动、过程等变化着的现象,在数学中引入了函数,随着对函数的研究,产生了微积分,微积分的创立以自然科学中四类问题的

5、处理直接相关:一、已知物体运动的路程作为时间的函数,求物体在任意时刻的速度与加速度等;二、求曲线的切线;三、求已知函数的最大值与最小值;四、求长度、面积、体积和重心等。导数是微积分的核心概念之一它是研究函数增减、变化快慢、最大(小)值等问题最一般、最有效的工具。导数研究的问题即变化率问题:研究某个变量相对于另一个变量变化的快慢程度.二.新课讲授(一)问题提出问题1:气球膨胀率我们都吹过气球回忆一下吹气球的过程,可以发现,随着气球内空气容量的增加,气球的半径增加越来越慢.从数学角度,如何描述这种现象呢?气球的

6、体积V(单位L)与半径r(单位:dm)之间的函数关系是V(r)=πr3如果将半径r表示为体积V的函数,那么62分析:,(1)当V从0增加到1时,气球半径增加了气球的平均膨胀率为hto(2)当V从1增加到2时,气球半径增加了r(2)-r(1)≈0.16(dm)气球的平均膨胀率为≈0.16(dm/L)可以看出,随着气球体积逐渐增大,它的平均膨胀率逐渐变小了.思考:当空气容量从V1增加到V2时,气球的平均膨胀率是多少?问题2:高台跳水在高台跳水运动中,运动员相对于水面的高度h(单位:m)与起跳后的时间t(单位:s

7、)存在函数关系h(t)=-4.9t2+6.5t+10.如何用运动员在某些时间段内的平均速度粗略地描述其运动状态?思考计算:0≤t≤0.5和1≤t≤2的平均速度在0≤t≤0.5这段时间里,;在1≤t≤2这段时间里,探究:计算运动员在这段时间里的平均速度,并思考以下问题:⑴运动员在这段时间内使静止的吗?⑵你认为用平均速度描述运动员的运动状态有什么问题吗?探究过程:如图是函数h(t)=-4.9t2+6.5t+10的图像,结合图形可知,,所以,虽然运动员在这段时间里的平均速度为,但实际情况是运动员仍然运动,并非静止

8、,可以说明用平均速度不能精确描述运动员的运动状态.(二)平均变化率概念:1.上述问题中的变化率可用式子表示,称为函数f(x)从x162到x2的平均变化率2.若设Δx=x2-x1,Δf=f(x2)-f(x1)(这里Δx看作是对于x1的一个“增量”可用x1+Δx代替x2,同样Δf=Δy=f(x2)-f(x1))3.则平均变化率为==思考:观察函数f(x)的图象平均变化率=表示什么?△x=x2-x1△y=f(x2)-f

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。