Two-Stream Convolutional Networks for Action Recognition in videos

Two-Stream Convolutional Networks for Action Recognition in videos

ID:40729160

大小:688.93 KB

页数:9页

时间:2019-08-06

Two-Stream Convolutional Networks for Action Recognition in videos_第1页
Two-Stream Convolutional Networks for Action Recognition in videos_第2页
Two-Stream Convolutional Networks for Action Recognition in videos_第3页
Two-Stream Convolutional Networks for Action Recognition in videos_第4页
Two-Stream Convolutional Networks for Action Recognition in videos_第5页
资源描述:

《Two-Stream Convolutional Networks for Action Recognition in videos》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Two-StreamConvolutionalNetworksforActionRecognitioninVideosKarenSimonyanAndrewZissermanVisualGeometryGroup,UniversityofOxfordfkaren,azg@robots.ox.ac.ukAbstractWeinvestigatearchitecturesofdiscriminativelytraineddeepConvolutionalNet-works(ConvNets)foractionrecognitioninvideo.Thechalle

2、ngeistocapturethecomplementaryinformationonappearancefromstillframesandmotionbe-tweenframes.Wealsoaimtogeneralisethebestperforminghand-craftedfeatureswithinadata-drivenlearningframework.Ourcontributionisthree-fold.First,weproposeatwo-streamConvNetarchitec-turewhichincorporatesspatia

3、landtemporalnetworks.Second,wedemonstratethataConvNettrainedonmulti-framedenseopticalflowisabletoachieveverygoodperformanceinspiteoflimitedtrainingdata.Finally,weshowthatmulti-tasklearning,appliedtotwodifferentactionclassificationdatasets,canbeusedtoincreasetheamountoftrainingdataandi

4、mprovetheperformanceonboth.OurarchitectureistrainedandevaluatedonthestandardvideoactionsbenchmarksofUCF-101andHMDB-51,whereitiscompetitivewiththestateoftheart.Italsoexceedsbyalargemarginpreviousattemptstousedeepnetsforvideoclassifica-tion.1IntroductionRecognitionofhumanactionsinvideo

5、sisachallengingtaskwhichhasreceivedasignificantamountofattentionintheresearchcommunity[11,14,17,26].Comparedtostillimageclassification,thetemporalcomponentofvideosprovidesanadditional(andimportant)clueforrecognition,asanumberofactionscanbereliablyrecognisedbasedonthemotioninformation.

6、Additionally,videoprovidesnaturaldataaugmentation(jittering)forsingleimage(videoframe)classification.Inthiswork,weaimatextendingdeepConvolutionalNetworks(ConvNets)[19],astate-of-the-artstillimagerepresentation[15],toactionrecognitioninvideodata.Thistaskhasrecentlybeenaddressedin[14]b

7、yusingstackedvideoframesasinputtothenetwork,buttheresultsweresignif-icantlyworsethanthoseofthebesthand-craftedshallowrepresentations[20,26].Weinvestigateadifferentarchitecturebasedontwoseparaterecognitionstreams(spatialandtemporal),whicharethencombinedbylatefusion.Thespatialstreampe

8、rformsactionrecogni

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。