2014_ECCV_Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition_183

2014_ECCV_Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition_183

ID:40705670

大小:3.89 MB

页数:11页

时间:2019-08-06

2014_ECCV_Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition_183_第1页
2014_ECCV_Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition_183_第2页
2014_ECCV_Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition_183_第3页
2014_ECCV_Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition_183_第4页
2014_ECCV_Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition_183_第5页
资源描述:

《2014_ECCV_Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition_183》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、SpatialPyramidPoolinginDeepConvolutionalNetworksforVisualRecognitionTechnicalreportKaimingHe1XiangyuZhang2ShaoqingRen3JianSun11MicrosoftResearch2Xi’anJiaotongUniversity3UniversityofScienceandTechnologyofChinafkahe,jiansung@microsoft.comxyz.clx@stu.xj

2、tu.edu.cnsqren@mail.ustc.edu.cnAbstractExistingdeepconvolutionalneuralnetworks(CNNs)re-quireafixed-size(e.g.224224)inputimage.Thisrequire-cropwarpmentis“artificial”andmayhurttherecognitionaccuracyfortheimagesorsub-imagesofanarbitrarysize/scale.Inimagecr

3、op/warpconvlayersfclayersoutputthiswork,weequipthenetworkswithamoreprincipledpoolingstrategy,“spatialpyramidpooling”,toeliminateimageconvlayersspatialpyramidpoolingfclayersoutputtheaboverequirement.Thenewnetworkstructure,calledFigure1.Top:croppingorwar

4、pingtofitafixedsize.Middle:aSPP-net,cangenerateafixed-lengthrepresentationregard-conventionaldeepconvolutionalnetworkstructure.Bottom:ourlessofimagesize/scale.Byremovingthefixed-sizelimi-spatialpyramidpoolingnetworkstructure.tation,wecanimproveallCNN-based

5、imageclassificationmethodsingeneral.OurSPP-netachievesstate-of-the-artaccuracyonthedatasetsofImageNet2012,PascalVOCtestingoftheCNNs:theprevalentCNNsrequireafixed2007,andCaltech101.inputimagesize(e.g.,224224),whichlimitsboththeas-ThepowerofSPP-netismores

6、ignificantinobjectdetec-pectratioandthescaleoftheinputimage.Whenappliedtion.UsingSPP-net,wecomputethefeaturemapsfromthetoimagesofarbitrarysizes,currentmethodsmostlyfittheentireimageonlyonce,andthenpoolfeaturesinarbitraryinputimagetothefixedsize,eitherviac

7、ropping[16,33]regions(sub-images)togeneratefixed-lengthrepresenta-orviawarping[8,12],asshowninFigure1(top).Butthetionsfortrainingthedetectors.Thismethodavoidsrepeat-croppedregionmaynotcontaintheentireobject,whiletheedlycomputingtheconvolutionalfeatures.

8、Inprocessingwarpedcontentmayresultinunwantedgeometricdistor-testimages,ourmethodcomputesconvolutionalfeaturestion.Recognitionaccuracycanbecompromisedduetothe30-170fasterthantherecentleadingmethodR-CNN(andcontentlossordistortion.Besides

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。