欢迎来到天天文库
浏览记录
ID:40662336
大小:98.50 KB
页数:4页
时间:2019-08-05
《2011年矩阵论试卷》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2011年矩阵论一,填空题:(每小题5分,共25分)1,设矩阵,向量,其中,则=_______________。2,由向量生成的R3的子空间的正交补子空间=____________。3,设三阶方阵A3×3的奇异值为3,5,2,则=__________。4,设线性空间,则空间的一组基为_____________。5,矩阵,则sin(At)=___________。二,(15分)设(1)求矩阵eAt.(2)求.三,(15分)设矩阵,(1)求矩阵A的奇异值。(2)求矩阵A的奇异值分解。四,(15分)设,(1),求矩阵A的M-P广义逆
2、A+。(2),在矩阵A的列空间R(A)中求一个向量β,使β与α在二范数意义下距离最近。五,(15分)设多项式空间上线性变换T定义如下:任取,,(1)求T的象空间R(T)的基和维数。(2)求T的零空间N(T)的基和维数。六,证明题:(1)(7分)证明对任何方阵A和B,有。(2)(8分)设酉空间Vn(C)上的线性空间T:Vn(C)Vn(C),满足条件,证明线性变换T在空间的标准正交基下的矩阵A是Hermite矩阵。
此文档下载收益归作者所有