欢迎来到天天文库
浏览记录
ID:40621784
大小:37.00 KB
页数:5页
时间:2019-08-05
《动态交通分配模型的文献综述》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、动态交通分配模型的文献综述动态交通流分配解析模型研究综述由于静态交通流分配理论不能体现OD需求矩阵随时间变化的起伏特征,动态交通流分配理论应运而生。自1978年Merchant和Nemhauser首次提出了动态交通流分配的概念以来,动态交通流分配理论因其在拥挤网络的典型应用受到众多学者的青睐。动态交通流分配是将时变的交通出行合理分配到不同的路径上,以降低个人的出行费用或系统总费用。按照建模方法的不同,动态交通流分配模型可以分为动态交通流分配解析模型和动态交通流分配仿真模型。动态交通流分配解析模型可以分为三类:数学规划模型、
2、最优控制模型和变分不等式模型。(1)数学规划模型Merchant和Nemhauser(1978)[1]首次采用数学规划的方法来描述动态交通流分配问题,建立了一个离散时间的、非凸的非线性规划模型(记为M-N模型)。在静态假定下,该模型可以转换为静态的系统最优分配模型。Ho(1980)[2]推导了M-N模型最优解的充分性条件,并提出了该模型的分段线性算法。Carey(1986)[3]改进M-N模型为非线性凸规划,并证明了模型解的惟一性。上述模型均局限于多个起点、一个终点的简单网络。Carey(l992)[4]首次提出了动态交通
3、流分配的FIFO(First-In-First-Out)规则,指出当网络扩展为多个终点时,FIFO原则必将导致模型解得可行域为非凸集合,如果不满足该原则,则模型解不合理。FIIFO原则的提出使得DTA问题的数学规划建模遇到了困难。Janson(1991)[5]最早尝试建立用户最优的动态交通流分配模型,但模型部分假设违反了FIFO原则,算法的数学性质也不足够好,有可能导致不符合实际交通情况的行为。Ziliaskopoulos(2000)[6]引入元胞传输模型建立了一个系统最优DTA线性规划模型,不需将路段出行时间函数作为路段
4、交通流量传播的唯一工具,而是按照细胞传播模型来处理交通流的传播,为动态交通流分配问题建模提供了一个新的思路。Ukkusuri和Wallerl(2008)[7]基于元胞传输模型建立了一个用户最优DTA线性规划模型,较Janson模型更易于求解,但上述两个基于元胞传输模型的DTA模型均仅适用于单一起点的网络。(2)最优控制模型最优控制模型假定时间是连续变量,约束条件与数学规划模型类似。Friesz等(1989)[8]基于路段的最优控制模型讨论了单终点情况的系统最优(SO)问题和用户平衡(UE)问题。该SO模型可以看作是离散M-
5、N模型的连续化,UE模型可以看作是Beckmann模型通过瞬间用户路径费用平衡的动态推广。其他有代表性的最优控制模型有:Ran和Shimazaki(1989a、1989b)[9][10]基于路段的SO-DAT模型、Wie(1990)[11]考虑了弹性需求条件下的UE-DTA模型、Ran(l993)[12]将路段驶入流量和驶出流量为控制变量的UE-DTA模型等。(3)变分不等式方法变分不等式(VI)理论在DTA领域的成功应用为DTA问题的建模构造了一个通用的建模平台,如不动点、最优化以及互补性问题,能够处理更现实的交通问题。
6、VI模型的基本思路是将动态交通流分配过程分解为网络加载和网络分配两个过程,最终通过求解一系列的线性规划来求解分配问题。Dafermos(1980)[13]首先将变分不等式方法引入了静态交通平衡建模领域。Drissi-Kaitoun(1992、1993)[14][15]通过时间、空间扩展网络技术直接将静态VI交通流分配模型扩展到动态VI交通流分配模型。国内学者也利用VI方法对DTA问题进行探讨,周溪召(2002)[16]考虑了三种路径选择行为:选择固定路径、选择具有最短理解出行时间的路径、选择最小实际出行时间路径,在允许交通
7、阻抗函数非对称的前提下,将三种路径行为综合表达为一个与之等价的VI模型。任华玲和高自友(2003、2004、2007)[17][18]针对瞬时动态用户最优条件建立了一系列变分不等式模型,探讨了基于VI的动态用户最优基本模型与算法,并考虑了路段能力有限制、ATIS占有率等实际交通问题。连爱萍等(2007)[19]将路段的元胞传输模型作为流量演进方程,构造了基于路段变量的动态用户最优VI模型,减少路段流量及流出率变量,从而减化了模型求解。动态交通流分配仿真模型研究综述与动态交通解析分配模型相比,动态交通流分配仿真模型没有明确的
8、数学表达式,没有严谨的解的性质,求解结果精确度不高,从学术的角度看并没有解析模型对学者有吸引力;但仿真模型具有有效的求解算法,能够直观地体现各影响因素之间的相互作用,适用于大型真实交通网络的交通分析,可用来评价交通管理措施、交通信息服务、路径诱导效果等。另一方面,从实用角度看,解的收敛性和唯一性的要求在
此文档下载收益归作者所有