2二次曲线上的四点共圆问题的完整结论

2二次曲线上的四点共圆问题的完整结论

ID:40156647

大小:1.95 MB

页数:7页

时间:2019-07-23

2二次曲线上的四点共圆问题的完整结论_第1页
2二次曲线上的四点共圆问题的完整结论_第2页
2二次曲线上的四点共圆问题的完整结论_第3页
2二次曲线上的四点共圆问题的完整结论_第4页
2二次曲线上的四点共圆问题的完整结论_第5页
资源描述:

《2二次曲线上的四点共圆问题的完整结论》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、二次曲线上的四点共圆问题的完整结论百年前,著名教材《坐标几何》(Loney著)中曾提到椭圆上四点共圆的一个必要条件是这四点的离心角之和为周角的整数倍(椭圆上任一点的坐标可以表示为R),角就叫做点的离心角),证明方法十分巧妙,还要运用高次方程的韦达定理.这一条件是否充分,一直是悬案.在20世纪80年代编写《数学题解辞典(平面解析几何)》时,仍未解决.到20世纪年代初编写《中学数学范例点评》时,才证明了此条件的充分性.2016年高考四川卷文科第20题,2011年高考全国大纲卷理科第21题,2005年高考湖北卷理科第

2、21题(也即文科第22题)及2002年高考江苏、广东卷第20题都是关于二次曲线上四点共圆的问题(见文献[3,4]).笔者曾由2005年的这道高考题得出了二次曲线上四点共圆的一个简洁充要条件(其证明也很简洁但有技巧):若两条直线与二次曲线有四个交点,则这四个交点共圆的充要条件是.文献[2]还用此结论证得了“椭圆上的四点共圆的充要条件是这四点的离心角之和为周角的整数倍”.文献[5]用较长的篇幅得出了下面的两个结论(即原文末的命题7、8):结论1抛物线的内接四边形同时内接于圆的充要条件是该四边形的两组对边、两条对角线

3、所在的三对直线中有一对直线的倾斜角互补.结论2圆锥曲线的内接四边形同时内接于圆的充要条件是该四边形的两组对边、两条对角线所在的三对直线中有一对直线的倾斜角互补.请注意,文献[5]中所涉及的直线的斜率均存在,所以这两个结论均正确.但不够完整,本文将给出二次曲线上的四点共圆问题的完整结论,即文末的推论4.定理1若两条二次曲线有四个交点,则这四个交点共圆.证明过这四个交点的二次曲线一定能表示成以下形式不同时为0):①式①左边的展开式中不含的项,选时,再令式①左边的展开式中含项的系数相等,得,此时曲线①即②的形式,这种

4、形式表示的曲线有且仅有三种情形:一个圆、一个点、无轨迹.而题中的四个交点都在曲线②上,所以曲线②表示圆.这就证得了四个交点共圆.定理2若两条直线与二次曲线有四个交点,则这四个交点共圆的充要条件是.证明由组成的曲线即所以经过它与的四个交点的二次曲线一定能表示成以下形式不同时为0):③必要性.若四个交点共圆,则存在使方程③表示圆,所以式③左边的展开式中含项的系数.而(否则③表示曲线,不表示圆),所以.充分性.当时,式③左边的展开式中不含的项,选时,再令式③左边的展开式中含项的系数相等,即,得.此时曲线③即④的形式,

5、这种形式表示的曲线有且仅有三种情形:一个圆、一个点、无轨迹.而题中的四个交点都在曲线④上,所以曲线④表示圆.这就证得了四个交点共圆.推论1若两条直线与二次曲线有四个交点,则这四个交点共圆的充要条件是这两条直线的斜率均不存在或这两条直线的斜率均存在且互为相反数.证明设两条直线为,由定理2得,四个交点共圆的充要条件是.(1)当即时,得四个交点共圆的充要条件即也即或.(2)当与不平行即时,由得,所以四个交点共圆的充要条件即也即直线的斜率均存在且均不为0且互为相反数.由此可得欲证成立.高考题1(2016年高考四川卷文科

6、第20题)已知椭圆:的一个焦点与短轴的两个端点是正三角形的三个顶点,点在椭圆上.(1)求椭圆的方程;(2)设不过原点且斜率为的直线与椭圆交于不同的两点,,线段的中点为,直线与椭圆交于,,证明:.解(1)(过程略)椭圆的方程是.(2)设,,线段的中点为.可得,把它们相减后分解因式(即点差法),再得所以,由推论1得四点共圆.再由相交弦定理,立得.竞赛题1(2014年全国高中数学联赛湖北赛区预赛第13题)设A、B为双曲线上的两点,点N(1,2)为线段AB的中点,线段AB的垂直平分线与双曲线交于C、D两点.(1)确定的

7、取值范围;(2)试判断A、B、C、D四点是否共圆?并说明理由.简解(1)用点差法可求得直线AB的方程是,由直线AB与双曲线交于不同的两点,可得且.得直线CD的方程是,由直线CD与双曲线交于不同的两点,可得且.所以的取值范围是.(2)在(1)的解答中已,所以由推论1立得四点共圆.笔者还发现还有一道竞赛题和四道高考题及均是二次曲线上的四点共圆问题,所以用以上定理的证法均可给出它们的简解.这五道题及其答案分别是:高考题2(2014年高考全国大纲卷理科第21题(即文科第22题))已知抛物线C:的焦点为,直线与y轴的交点

8、为,与的交点为,且.(1)求的方程;(2)过的直线与相交于两点,若的垂直平分线与相交于两点,且四点在同一圆上,求的方程.(答案:(1);(2)或.)高考题3(2011年高考全国大纲卷理科第21题(即文科的22题))如图1所示,已知为坐标原点,为椭圆在y轴正半轴上的焦点,过且斜率为的直线与交于两点,点满足0.图1(1)证明:点在上;(2)设点关于点的对称点为,证明:四点在同一圆上.高考题

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。