欢迎来到天天文库
浏览记录
ID:40046849
大小:6.65 MB
页数:40页
时间:2019-07-18
《专题12 函数模型及其应用-2020年高考数学一轮复习(文理通用)(解析版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题12函数模型及其应用最新考纲1.了解指数函数、对数函数、幂函数的增长特征,结合具体实例体会直线上升、指数增长、对数增长等不同函数类型增长的含义.2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.基础知识融会贯通1.几类函数模型函数模型函数解析式一次函数模型f(x)=ax+b(a,b为常数,a≠0)反比例函数模型f(x)=+b(k,b为常数且k≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)指数函数模型f(x)=bax+c(a
2、,b,c为常数,b≠0,a>0且a≠1)对数函数模型f(x)=blogax+c(a,b,c为常数,b≠0,a>0且a≠1)幂函数模型f(x)=axn+b(a,b为常数,a≠0)2.三种函数模型的性质函数性质y=ax(a>1)y=logax(a>1)y=xn(n>0)在(0,+∞)上的增减性单调递增单调递增单调递增增长速度越来越快越来越慢相对平稳图象的变化随x的增大逐渐表现为与y轴平行随x的增大逐渐表现为与x轴平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有logax3、1.解函数应用题的步骤2.“对勾”函数形如f(x)=x+(a>0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-]和[,+∞)上单调递增,在[-,0)和(0,]上单调递减.(2)当x>0时,x=时取最小值2,当x<0时,x=-时取最大值-2.重点难点突破【题型一】用函数图象刻画变化过程【典型例题】某市气象部门根据2018年各月的每天最高气温平均值与最低气温平均值(单位:°C)数据,绘制如下折线图,那么,下列叙述错误的是( )A.各月最高气温平均值与最低气温平均值总体呈正相关B.全年中2月份的4、最高气温平均值与最低气温平均值的差值最大C.全年中各月最低气温平均值不高于10℃的月份有5个D.从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势【解答】解:由2018年各月的每天最高气温平均值和最低气温平均值(单位:℃)数据,绘制出的折线图,知:在A中,各月最高气温平均值与最低气温平均值为正相关,故A正确;在B中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B正确;在C中,全年中各月最低气温平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5个,故C正确5、;在D中,从2018年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D错误故选:D. 【再练一题】某种热饮需用开水冲泡,其基本操作流程如下:①先将水加热到100℃,水温y(℃)与时间t(min)近似满足一次函数关系;②用开水将热饮冲泡后在室温下放置,温度y(℃)与时间t(min)近似满足函数的关系式为(a,b为常数),通常这种热饮在40℃时,口感最佳.某天室温为20℃时,冲泡热饮的部分数据如图所示.那么按上述流程冲泡一杯热饮,并在口感最佳时饮用,最少需要的时间为( )A.35mi6、nB.30minC.25minD.20min【解答】解:由题意知当0≤t≤5时,图象是直线,当t≥5时,图象的解析式为,图象过(5,100)和(15,60),则,得,即y=80()20,t≥5,当y=40时,得80()20=40,即80()20,得(),得2,得t=25,即最少需要的时间为25min,故选:C. 思维升华判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合7、图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.【题型二】已知函数模型的实际问题【典型例题】在一定的储存温度范围内,某食品的保鲜时间y(单位:小时)与储存温度x(单位:℃)满足函数关系y=ekx+b(e=2.71828…为自然对数的底数,k,b为常数),若该食品在0℃时的保鲜时间为120小时,在30℃时的保鲜时间为15小时,则该食品在20℃时的保鲜时间为( )A.30小时B.40小时C.50小时D.80小时【解答】解:由题意可知,∴e30k,∴e10k,∴e20k+b8、=(e10k)2•eb•120=30.故选:A. 【再练一题】地震里氏震级是地震强度大小的一种度量.地震释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.已知两次地震的里氏震级分别为8.0级和7.5级,若它们释放的能量分别为E1和E2,则的值所在的区间为( )A.(1,2)B.(5,6)C.(7,8)D.(15,16)【解答】解:lgE=4.8+1.5M,∴lgE1=4.8+1.5×8=16.8,lgE2=4
3、1.解函数应用题的步骤2.“对勾”函数形如f(x)=x+(a>0)的函数模型称为“对勾”函数模型:(1)该函数在(-∞,-]和[,+∞)上单调递增,在[-,0)和(0,]上单调递减.(2)当x>0时,x=时取最小值2,当x<0时,x=-时取最大值-2.重点难点突破【题型一】用函数图象刻画变化过程【典型例题】某市气象部门根据2018年各月的每天最高气温平均值与最低气温平均值(单位:°C)数据,绘制如下折线图,那么,下列叙述错误的是( )A.各月最高气温平均值与最低气温平均值总体呈正相关B.全年中2月份的
4、最高气温平均值与最低气温平均值的差值最大C.全年中各月最低气温平均值不高于10℃的月份有5个D.从2018年7月至12月该市每天最高气温平均值与最低气温平均值呈下降趋势【解答】解:由2018年各月的每天最高气温平均值和最低气温平均值(单位:℃)数据,绘制出的折线图,知:在A中,各月最高气温平均值与最低气温平均值为正相关,故A正确;在B中,全年中,2月的最高气温平均值与最低气温平均值的差值最大,故B正确;在C中,全年中各月最低气温平均值不高于10℃的月份有1月,2月,3月,11月,12月,共5个,故C正确
5、;在D中,从2018年7月至12月该市每天最高气温平均值与最低气温平均值,先上升后下降,故D错误故选:D. 【再练一题】某种热饮需用开水冲泡,其基本操作流程如下:①先将水加热到100℃,水温y(℃)与时间t(min)近似满足一次函数关系;②用开水将热饮冲泡后在室温下放置,温度y(℃)与时间t(min)近似满足函数的关系式为(a,b为常数),通常这种热饮在40℃时,口感最佳.某天室温为20℃时,冲泡热饮的部分数据如图所示.那么按上述流程冲泡一杯热饮,并在口感最佳时饮用,最少需要的时间为( )A.35mi
6、nB.30minC.25minD.20min【解答】解:由题意知当0≤t≤5时,图象是直线,当t≥5时,图象的解析式为,图象过(5,100)和(15,60),则,得,即y=80()20,t≥5,当y=40时,得80()20=40,即80()20,得(),得2,得t=25,即最少需要的时间为25min,故选:C. 思维升华判断函数图象与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图象.(2)验证法:根据实际问题中两变量的变化快慢等特点,结合
7、图象的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案.【题型二】已知函数模型的实际问题【典型例题】在一定的储存温度范围内,某食品的保鲜时间y(单位:小时)与储存温度x(单位:℃)满足函数关系y=ekx+b(e=2.71828…为自然对数的底数,k,b为常数),若该食品在0℃时的保鲜时间为120小时,在30℃时的保鲜时间为15小时,则该食品在20℃时的保鲜时间为( )A.30小时B.40小时C.50小时D.80小时【解答】解:由题意可知,∴e30k,∴e10k,∴e20k+b
8、=(e10k)2•eb•120=30.故选:A. 【再练一题】地震里氏震级是地震强度大小的一种度量.地震释放的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.已知两次地震的里氏震级分别为8.0级和7.5级,若它们释放的能量分别为E1和E2,则的值所在的区间为( )A.(1,2)B.(5,6)C.(7,8)D.(15,16)【解答】解:lgE=4.8+1.5M,∴lgE1=4.8+1.5×8=16.8,lgE2=4
此文档下载收益归作者所有