数列的求和专项提升

数列的求和专项提升

ID:39951908

大小:13.50 KB

页数:3页

时间:2019-07-15

数列的求和专项提升_第1页
数列的求和专项提升_第2页
数列的求和专项提升_第3页
资源描述:

《数列的求和专项提升》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、数列的求和专项提升一、选择题(本大题共3小题,共15.0分)1.A.B.C.D.2.数列的前项和是,且,为常数列,则()A.B.C.D.3.A.B.C.D.二、填空题(本大题共1小题,共5.0分)4.(理)在数列{an}中,a1=6,且对任意大于1的正整数n,点(,)在直线x-y=上,则数列{}的前n项和Sn=____________.三、解答题(本大题共1小题,共12.0分)5.已知等差数列的公差不为零,其前n项和为,若=70,且成等比数列.(Ⅰ)求数列的通项公式;(Ⅱ)求数列的前n项和为.数列的求和专项提升答案【答案】1.  C       2.  B       3.  C  

2、     4.         5.  (Ⅰ)  ; (Ⅱ).       【解析】1.  略2.  ∵数列{an}的前n项和为Sn,且a1=1,∴S1+1×a1=1+1=2,∵{Sn+nan}为常数列,∴由题意知,Sn+nan=2,当n≥2时,(n+1)an=(n-1)an-1,从而,当n=1时上式成立,。故选B。3.  略4.  解:∵点()在直线x-y=上,则,又,∴{}是以为首项,为公差的等差数列,∴,即an=6n2,则=所以=故答案为:5.  解:(Ⅰ)由题知  ,即  , 解得  或  (舍去),所以数列的通项公式为  ; (Ⅱ)由(Ⅰ)得 ,则  ,则 .

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。