欢迎来到天天文库
浏览记录
ID:6697643
大小:220.12 KB
页数:7页
时间:2018-01-22
《2015高考数列求和专项训练》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、数列求和专项训练1.(2011•重庆)设{an}是公比为正数的等比数列a1=2,a3=a2+4.(Ⅰ)求{an}的通项公式;(Ⅱ)设{bn}是首项为1,公差为2的等差数列,求数列{an+bn}的前n项和Sn.分析:(Ⅰ)由{an}是公比为正数的等比数列,设其公比,然后利用a1=2,a3=a2+4可求得q,即可求得{an}的通项公式(Ⅱ)由{bn}是首项为1,公差为2的等差数列可求得bn=1+(n﹣1)×2=2n﹣1,然后利用等比数列与等差数列的前n项和公式即可求得数列{an+bn}的前n项和Sn.解答:解:(Ⅰ)∵设{an
2、}是公比为正数的等比数列∴设其公比为q,q>0∵a3=a2+4,a1=2∴2×q2=2×q+4解得q=2或q=﹣1∵q>0∴q=2∴{an}的通项公式为an=2×2n﹣1=2n(Ⅱ)∵{bn}是首项为1,公差为2的等差数列∴bn=1+(n﹣1)×2=2n﹣1∴数列{an+bn}的前n项和Sn=+=2n+1﹣2+n2=2n+1+n2﹣22.(2011•辽宁)已知等差数列{an}满足a2=0,a6+a8=﹣10(I)求数列{an}的通项公式;(II)求数列{}的前n项和.分析:(I)根据等差数列的通项公式化简a2=0和a6+a
3、8=﹣10,得到关于首项和公差的方程组,求出方程组的解即可得到数列的首项和公差,根据首项和公差写出数列的通项公式即可;(II)把(I)求出通项公式代入已知数列,列举出各项记作①,然后给两边都除以2得另一个关系式记作②,①﹣②后,利用an的通项公式及等比数列的前n项和的公式化简后,即可得到数列{}的前n项和的通项公式.解答:解:(I)设等差数列{an}的公差为d,由已知条件可得,解得:,故数列{an}的通项公式为an=2﹣n;(II)设数列{}的前n项和为Sn,即Sn=a1++…+①,故S1=1,=++…+②,当n>1时,①
4、﹣②得:=a1++…+﹣=1﹣(++…+)﹣=1﹣(1﹣)﹣=,所以Sn=,综上,数列{}的前n项和Sn=.是一道中档题.3.(2011•安徽)在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,将这n+2个数的乘积计作Tn,再令an=lgTn,n≥1.(I)求数列{an}的通项公式;(Ⅱ)设bn=tanan•tanan+1,求数列{bn}的前n项和Sn.分析:(I)根据在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,我们易得这n+2项的几何平均数为10,故Tn=10n+2,进而根据对数
5、的运算性质我们易计算出数列{an}的通项公式;(II)根据(I)的结论,利用两角差的正切公式,我们易将数列{bn}的每一项拆成的形式,进而得到结论.解答:解:(I)∵在数1和100之间插入n个实数,使得这n+2个数构成递增的等比数列,又∵这n+2个数的乘积计作Tn,∴Tn=10n+2又∵an=lgTn,∴an=lg10n+2=n+2,n≥1.(II)∵bn=tanan•tanan+1=tan(n+2)•tan(n+3)=,∴Sn=b1+b2+…+bn=[]+[]+…+[]=点评:本题考查的知识点是等比数列的通项公式及数列与
6、三角函数的综合,其中根据已知求出这n+2项的几何平均数为10,是解答本题的关键.4.(2010•四川)已知等差数列{an}的前3项和为6,前8项和为﹣4.(Ⅰ)求数列{an}的通项公式;(Ⅱ)设bn=(4﹣an)qn﹣1(q≠0,n∈N*),求数列{bn}的前n项和Sn.分析:(1)设{an}的公差为d,根据等差数列的求和公式表示出前3项和前8项的和,求的a1和d,进而根据等差数列的通项公式求得an.(2)根据(1)中的an,求得bn,进而根据错位相减法求得数列{bn}的前n项和Sn.解答:解:(1)设{an}的公差为d,
7、由已知得解得a1=3,d=﹣1故an=3+(n﹣1)(﹣1)=4﹣n;(2)由(1)的解答得,bn=n•qn﹣1,于是Sn=1•q0+2•q1+3•q2+…+(n﹣1)•qn﹣1+n•qn.若q≠1,将上式两边同乘以q,得qSn=1•q1+2•q2+3•q3+…+(n﹣1)•qn+n•qn+1.将上面两式相减得到(q﹣1)Sn=nqn﹣(1+q+q2+…+qn﹣1)=nqn﹣于是Sn=若q=1,则Sn=1+2+3+…+n=所以,Sn=.5.(2010•四川)已知数列{an}满足a1=0,a2=2,且对任意m、n∈N*都有a
8、2m﹣1+a2n﹣1=2am+n﹣1+2(m﹣n)2(1)求a3,a5;(2)设bn=a2n+1﹣a2n﹣1(n∈N*),证明:{bn}是等差数列;(3)设cn=(an+1﹣an)qn﹣1(q≠0,n∈N*),求数列{cn}的前n项和Sn.分析:(1)欲求a3,a5只需令m=2,n=1赋值即可.(2)以
此文档下载收益归作者所有