傅里叶变换和系统的频域

傅里叶变换和系统的频域

ID:39835296

大小:1.28 MB

页数:113页

时间:2019-07-12

傅里叶变换和系统的频域_第1页
傅里叶变换和系统的频域_第2页
傅里叶变换和系统的频域_第3页
傅里叶变换和系统的频域_第4页
傅里叶变换和系统的频域_第5页
资源描述:

《傅里叶变换和系统的频域》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第四章连续系统的频域分析4.1信号分解为正交函数4.2傅里叶级数4.3周期信号的频谱4.4非周期信号的频谱——傅里叶变换4.5傅里叶变换的性质4.6能量谱和功率谱4.7周期信号的傅里叶变换4.8LTI系统的频域分析4.9取样定理4.10序列的傅里叶分析4.11离散傅里叶变换及其性质第四章连续系统的频域分析4.1信号分解为正交函数一、矢量正交与正交分解时域分析,以冲激函数为基本信号,任意输入信号可分解为一系列冲激函数;而yf(t)=h(t)*f(t)。本章将以正弦信号和虚指数信号ejωt为基本信号,任意输入信号可分解为一

2、系列不同频率的正弦信号或虚指数信号之和。这里用于系统分析的独立变量是频率。故称为频域分析。矢量Vx=(vx1,vx2,vx3)与Vy=(vy1,vy2,vy3)正交的定义:其内积为0。即4.1信号分解为正交函数由两两正交的矢量组成的矢量集合---称为正交矢量集如三维空间中,以矢量vx=(2,0,0)、vy=(0,2,0)、vz=(0,0,2)所组成的集合就是一个正交矢量集。例如对于一个三维空间的矢量A=(2,5,8),可以用一个三维正交矢量集{vx,vy,vz}分量的线性组合表示。即A=vx+2.5vy+4vz矢量空间

3、正交分解的概念可推广到信号空间,在信号空间找到若干个相互正交的信号作为基本信号,使得信号空间中任意信号均可表示成它们的线性组合。二、信号正交与正交函数集1.定义:定义在(t1,t2)区间的两个函数1(t)和2(t),若满足(两函数的内积为0)则称1(t)和2(t)在区间(t1,t2)内正交。2.正交函数集:若n个函数1(t),2(t),…,n(t)构成一个函数集,当这些函数在区间(t1,t2)内满足则称此函数集为在区间(t1,t2)的正交函数集。3.完备正交函数集:如果在正交函数集{1(t),2(t)

4、,…,n(t)}之外,不存在函数φ(t)(≠0)满足则称此函数集为完备正交函数集。例如:三角函数集{1,cos(nΩt),sin(nΩt),n=1,2,…}和虚指数函数集{ejnΩt,n=0,±1,±2,…}是两组典型的在区间(t0,t0+T)(T=2π/Ω)上的完备正交函数集。(i=1,2,…,n)三、信号的正交分解设有n个函数1(t),2(t),…,n(t)在区间(t1,t2)构成一个正交函数空间。将任一函数f(t)用这n个正交函数的线性组合来近似,可表示为f(t)≈C11+C22+…+Cnn如何选择

5、各系数Cj使f(t)与近似函数之间误差在区间(t1,t2)内为最小。通常使误差的方均值(称为均方误差)最小。均方误差为为使上式最小展开上式中的被积函数,并求导。上式中只有两项不为0,写为即所以系数代入,得最小均方误差(推导过程见教材)考虑到:在用正交函数去近似f(t)时,所取得项数越多,即n越大,则均方误差越小。当n→∞时(为完备正交函数集),均方误差为零。此时有上式称为(Parseval)帕斯瓦尔公式,表明:在区间(t1,t2)f(t)所含能量恒等于f(t)在完备正交函数集中分解的各正交分量能量的总和。函数f(t)可

6、分解为无穷多项正交函数之和4.2傅里叶级数一、傅里叶级数的三角形式设周期信号f(t),其周期为T,角频率=2/T,当满足狄里赫利(Dirichlet)条件时,它可分解为如下三角级数——称为f(t)的傅里叶级数系数an,bn称为傅里叶系数可见,an是n的偶函数,bn是n的奇函数。式中,A0=a0上式表明,周期信号可分解为直流和许多余弦分量。其中,A0/2为直流分量;A1cos(t+1)称为基波或一次谐波,它的角频率与原周期信号相同;A2cos(2t+2)称为二次谐波,它的频率是基波的2倍;一般而言,Ancos

7、(nt+n)称为n次谐波。可见An是n的偶函数,n是n的奇函数。an=Ancosn,bn=–Ansinn,n=1,2,…将上式同频率项合并,可写为二、波形的对称性与谐波特性1.f(t)为偶函数——对称纵坐标bn=0,展开为余弦级数。2.f(t)为奇函数——对称于原点an=0,展开为正弦级数。实际上,任意函数f(t)都可分解为奇函数和偶函数两部分,即f(t)=fod(t)+fev(t)由于f(-t)=fod(-t)+fev(-t)=-fod(t)+fev(t)所以3.f(t)为奇谐函数——f(t)=–f(t±T

8、/2)此时其傅里叶级数中只含奇次谐波分量,而不含偶次谐波分量即a0=a2=…=b2=b4=…=0三、傅里叶级数的指数形式三角形式的傅里叶级数,含义比较明确,但运算常感不便,因而经常采用指数形式的傅里叶级数。可从三角形式推出:利用cosx=(ejx+e–jx)/2如果函数f(t)的前半周期波形移动T/2后,与后半周期波形相对于横轴对

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。