Transfer Learning for Collaborative Filtering via a Rating-Matrix Generative Model

Transfer Learning for Collaborative Filtering via a Rating-Matrix Generative Model

ID:39820431

大小:399.79 KB

页数:8页

时间:2019-07-12

Transfer Learning for Collaborative Filtering via a Rating-Matrix Generative Model_第1页
Transfer Learning for Collaborative Filtering via a Rating-Matrix Generative Model_第2页
Transfer Learning for Collaborative Filtering via a Rating-Matrix Generative Model_第3页
Transfer Learning for Collaborative Filtering via a Rating-Matrix Generative Model_第4页
Transfer Learning for Collaborative Filtering via a Rating-Matrix Generative Model_第5页
资源描述:

《Transfer Learning for Collaborative Filtering via a Rating-Matrix Generative Model》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、TransferLearningforCollaborativeFilteringviaaRating-MatrixGenerativeModelBinLilibin@fudan.edu.cnSchoolofComputerScience,FudanUniversity,Shanghai200433,ChinaQiangYangqyang@cse.ust.hkDept.ofComputerScience&Engineering,HongKongUniversityofScience&Technology

2、,HongKong,ChinaXiangyangXuexyxue@fudan.edu.cnSchoolofComputerScience,FudanUniversity,Shanghai200433,ChinaAbstractitemsbasedonacollectionoflike-mindedusers’ratingrecordsonthesamesetofitems.VariousCFmeth-Cross-domaincollaborativefilteringsolvesodshavebeenpr

3、oposedinthelastdecade.Forex-thesparsityproblembytransferringratingample,memory-basedmethods(Resnicketal.,1994;knowledgeacrossmultipledomains.InthisSarwaretal.,2001)findK-nearestneighborsbasedonpaper,weproposearating-matrixgenerativesomesimilaritymeasure.M

4、odel-basedmethods(Hof-model(RMGM)foreffectivecross-domainmann&Puzicha,1999;Pennocketal.,2000;Si&Jin,collaborativefiltering.Wefirstshowthat2003)learnprference/ratingmodelsforsimilaruserstherelatednessacrossmultipleratingmatri-(anditems).Matrixfactorizationme

5、thods(Srebro&cescanbeestablishedbyfindingasharedJaakkola,2003)findalow-rankapproximationfortheimplicitcluster-levelratingmatrix,whichisratingmatrix.Mostofthesemethodsarebasedonthenextextendedtoacluster-levelratingmodel.availableratingsinthegivenratingmatri

6、x.Thus,theConsequently,aratingmatrixofanyrelatedperformanceofthesemethodslargelydependsonthetaskcanbeviewedasdrawingasetofusersdensityofthegivenratingmatrix.anditemsfromauser-itemjointmixturemodelaswellasdrawingthecorrespondingHowever,inreal-worldrecomme

7、ndersystems,usersratingsfromthecluster-levelratingmodel.canrateaverylimitednumberofitems.Thus,theThecombinationofthesetwomodelsgivesratingmatrixisoftenextremelysparse.Asaresult,theRMGM,whichcanbeusedtofillthetheavailableratingdatathatcanbeusedforK-NNmissi

8、ngratingsforbothexistingandnewsearch,probabilisticmodeling,ormatrixfactorizationusers.AmajoradvantageofRMGMisthatareradicallyinsufficient.Thesparsityproblemhasitcansharetheknowledgebypoolingtherat-becomeamajorbottleneckformo

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。