Large-scale Parallel Collaborative Filtering for the netflix prize

Large-scale Parallel Collaborative Filtering for the netflix prize

ID:40636148

大小:161.82 KB

页数:12页

时间:2019-08-05

Large-scale Parallel Collaborative Filtering for the netflix prize_第1页
Large-scale Parallel Collaborative Filtering for the netflix prize_第2页
Large-scale Parallel Collaborative Filtering for the netflix prize_第3页
Large-scale Parallel Collaborative Filtering for the netflix prize_第4页
Large-scale Parallel Collaborative Filtering for the netflix prize_第5页
资源描述:

《Large-scale Parallel Collaborative Filtering for the netflix prize》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Large-scaleParallelCollaborativeFilteringfortheNetflixPrizeYunhongZhou,DennisWilkinson,RobertSchreiberandRongPanHPLabs,1501PageMillRd,PaloAlto,CA,94304{yunhong.zhou,dennis.wilkinson,rob.schreiber,rong.pan}@hp.comAbstract.Manyrecommendationsystemssuggestitems

2、tousersbyutilizingthetechniquesofcollaborativefiltering(CF)basedonhistor-icalrecordsofitemsthattheusershaveviewed,purchased,orrated.TwomajorproblemsthatmostCFapproacheshavetoresolvearescal-abilityandsparsenessoftheuserprofiles.Inthispaper,wedescribeAlternatin

3、g-Least-SquareswithWeighted-λ-Regularization(ALS-WR),aparallelalgorithmthatwedesignedfortheNetflixPrize,alarge-scalecol-laborativefilteringchallenge.WeuseparallelMatlabonaLinuxclusterastheexperimentalplatform.WeshowempiricallythattheperformanceofALS-WRmonoton

4、icallyincreaseswithboththenumberoffeaturesandthenumberofALSiterations.OurALS-WRappliedtotheNet-flixdatasetwith1000hiddenfeaturesobtainedaRMSEscoreof0.8985,whichisoneofthebestresultsbasedonapuremethod.Combinedwiththeparallelversionofotherknownmethods,weachiev

5、edaperformanceimprovementof5.91%overNetflix’sownCineMatchrecommendationsystem.Ourmethodissimpleandscaleswelltoverylargedatasets.1IntroductionRecommendationsystemstrytorecommenditems(movies,music,webpages,products,etc)tointerestedpotentialcustomers,basedonthe

6、informationavail-able.Asuccessfulrecommendationsystemcansignificantlyimprovetherevenueofe-commercecompaniesorfacilitatetheinteractionofusersinonlinecommu-nities.Amongrecommendationsystems,content-basedapproachesanalyzethecontent(e.g.,texts,meta-data,features

7、)oftheitemstoidentifyrelateditems,whilecollaborativefilteringusestheaggregatedbehavior/tasteofalargenum-berofuserstosuggestrelevantitemstospecificusers.CollaborativefilteringispopularandwidelydeployedinInternetcompanieslikeAmazon[16],Netflix[2],GoogleNews[7],an

8、dothers.TheNetflixPrizeisalarge-scaledataminingcompetitionheldbyNetflixforthebestrecommendationsystemalgorithmforpredictinguserratingsonmovies,basedonatrainingsetofmorethan100millionratingsgivenbyover480

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。