Factor in the Neighbors Scalable and Accurate Collaborative Filtering

Factor in the Neighbors Scalable and Accurate Collaborative Filtering

ID:40384381

大小:222.66 KB

页数:11页

时间:2019-08-01

Factor in the Neighbors Scalable and Accurate Collaborative Filtering_第1页
Factor in the Neighbors Scalable and Accurate Collaborative Filtering_第2页
Factor in the Neighbors Scalable and Accurate Collaborative Filtering_第3页
Factor in the Neighbors Scalable and Accurate Collaborative Filtering_第4页
Factor in the Neighbors Scalable and Accurate Collaborative Filtering_第5页
资源描述:

《Factor in the Neighbors Scalable and Accurate Collaborative Filtering》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、FactorintheNeighbors:ScalableandAccurateCollaborativeFilteringYehudaKoren∗Yahoo!Research,Haifayehuda@yahoo-inc.comABSTRACTandlatentfactormodels.Neighborhoodmethodsarecenteredoncomputingtherelation-Recommendersystemsprovideuserswithpersonalizedsuggestionsshipsbetweenitemsor,

2、alternatively,betweenusers.Anitem-itemforproductsorservices.ThesesystemsoftenrelyonCollaboratingapproachevaluatesthepreferenceofausertoanitembasedonFiltering(CF),wherepasttransactionsareanalyzedinordertoes-ratingsofsimilaritemsbythesameuser.Inasense,thesemeth-tablishconnect

3、ionsbetweenusersandproducts.ThemostcommonodstransformuserstotheitemspacebyviewingthemasbasketsapproachtoCFisbasedonneighborhoodmodels,whichisbasedofrateditems.Thisway,wenolongerneedtocompareuserstoonsimilaritiesbetweenproductsorusers.Inthisworkweintroduceitems,butratherdire

4、ctlyrelateitemstoitems.anewneighborhoodmodelwithanimprovedpredictionaccuracy.Latentfactormodels,suchasSingularValueDecomposition(SVD),Unlikepreviousapproachesthatarebasedonheuristicsimilarities,compriseanalternativeapproachbytransformingbothitemsandwemodelneighborhoodrelati

5、onsbyminimizingaglobalcostfunc-userstothesamelatentfactorspace,thusmakingthemdirectlytion.Furtheraccuracyimprovementsareachievedbyextendingthecomparable.Thelatentspacetriestoexplainratingsbycharacteriz-modeltoexploitbothexplicitandimplicitfeedbackbytheusers.ingbothproductsa

6、ndusersonfactorsautomaticallyinferredfromPastmodelswerelimitedbytheneedtocomputeallpairwisesimi-userfeedback.Forexample,whentheproductsaremovies,fac-laritiesbetweenitemsorusers,whichgrowquadraticallywithinputtorsmightmeasureobviousdimensionssuchascomedyvs.drama,size.Inparti

7、cular,thislimitationvastlycomplicatesadoptinguseramountofaction,ororientationtochildren;lesswelldefineddi-similaritymodels,duetothetypicallargenumberofusers.Ourmensionssuchasdepthofcharacterdevelopmentor“quirkiness”;newmodelsolvestheselimitationsbyfactoringtheneighborhoodorc

8、ompletelyuninterpretabledimensions.Forusers,eachfactormodel,thusmakingbothitem-ite

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。