欢迎来到天天文库
浏览记录
ID:34605024
大小:731.23 KB
页数:8页
时间:2019-03-08
《Time-dependent Models in Collaborative Filtering based Recommender System-xlvector.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、2009IEEE/WIC/ACMInternationalConferenceonWebIntelligenceandIntelligentAgentTechnology-Workshops2009IEEE/WIC/ACMInternationalJointConferenceonWebIntelligenceandIntelligentAgentTechnologyTime-dependentModelsinCollaborativeFilteringbasedRecommenderSystemLiangXiangQingYangChineseAc
2、ademyofSciencesChineseAcademyofSciencesInstituteofAutomationInstituteofAutomationNationalLaboratoryofPatternRecognitionNationalLaboratoryofPatternRecognitionBeijing,ChinaBeijing,Chinaxlvector@gmail.comqyang@nlpr.ia.ac.cnAbstract—Inrecentyears,timeinformationismoreandanditem-ite
3、msimilarity.Neighborhoodmethodsareeasytomoreimportantincollaborativefiltering(CF)basedrecom-implementandwidelyusedinmanyrecommendersystemsmendersystembecausemanysystemshavecollectedrating[2][5][6].dataforalongtime,andtimeeffectsinuserpreferenceisAnothertypeofmethodoftenusedinCFi
4、smatrixstronger.Inthispaper,wefocusonmodelingtimeeffectsinCFandanalyzehowtemporalfeaturesinfluenceCF.Therearefactorization,whichisalsoknownaslatentclassmodelfourmaintypesoftimeeffectsinCF:(1)timebias,theinterest[10][11].Itskeyideaisusingalowrankmatrixtoap-ofwholesocietychangeswi
5、thtime;(2)userbiasshifting,proximaterealratingmatrix.SingularValueDecompositionausermaychangehis/herratinghabitovertime;(3)item(SVD)[12][13][14]isoftenusedtocalculatelowrankratingbiasshifting,thepopularityofitemschangeswithtime;(4)matrix,thusthesefactorizedmethodsareoftencalled
6、SVD.userpreferenceshifting,ausermaychangehis/herattitudetosometypesofitems.Inthiswork,thesefourtimeeffectsareManyresearchesaboutCFshowfactorizationbasedmethodsusedbyfactorizedmodel,whichiscalledTimeSVD.Moreover,canproducemoreaccuratepredictionsthanneighborhoodmanyothertimeeffec
7、tsareusedbysimplemethods.Ourtime-basedmethods.dependentmodelsaretestedonNetflixdatafromNov.1999toNowadays,manyrecommendersystemhavecollectedDec.2005.ExperimentalresultsshowthatpredictionaccuracyuserpreferencedataforalongtimeandtimeinformationisinCFcanbeimprovedsignificantlybyusin
8、gtimeinformation.moreandmoreimportantinmakingrecommend
此文档下载收益归作者所有