Tree-Based Models

Tree-Based Models

ID:40353908

大小:2.45 MB

页数:122页

时间:2019-07-31

Tree-Based Models_第1页
Tree-Based Models_第2页
Tree-Based Models_第3页
Tree-Based Models_第4页
Tree-Based Models_第5页
资源描述:

《Tree-Based Models》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、Tree-BasedModelsKwok-LeungTsuiSystemsEngineering&EngineeringManagementCityUniversityofHongKong1RegressionModels1.Classicallinearmodel2.Generalizedlinearmodel3.AdditivemodelSj:smoothnonparametricfunction4.Generalizedadditivemodels2ClassificationandReg

2、ressionTree(CART)Originaldata(Input)AlgorithmOutput•SplitthedataintoRootnodeVariablesResponsetwoormoresubsetX1>c1?x1x2…xnYbasedonthevalueofNOYESTerminalIntermediatevariables.nodenode•ContinuouslysplitX2>c2?eachsubsetintofinerNOYESsubsets.•Stopgrowing

3、treesTerminalTerminalorprunetrees.nodenode3WeatherData:PlayornotPlay?OutlookTemperatureHumidityWindyPlay?sunnyhothighfalseNosunnyhothightrueNoovercasthothighfalseYesrainmildhighfalseYesraincoolnormalfalseYesraincoolnormaltrueNoovercastcoolnormaltrueY

4、essunnymildhighfalseNosunnycoolnormalfalseYesrainmildnormalfalseYessunnymildnormaltrueYesovercastmildhightrueYesovercasthotnormalfalseYesrainmildhightrueNo4ExampleTreefor“Play?”OutlooksunnyrainovercastHumidityYesWindyhighnormaltruefalseNoYesNoYes5Tre

5、e-BasedModels•Basicidea•Partitionthefeaturespaceintoasetofrectangle(Forsimplicity,recursivebinarypartition)•Fitasimplemodel(e.g.,constant)ineachone.R5Rc5t24c22Rx3t2c3R4Rc41c1t1t3x1BinaryTreeBinaryPartition6Tree-BasedModels•Models•Cm—theregressionmode

6、lpredictionvaluecorrespondingtotheregionRm5f(x)cmI{(x1,x2)Rm}m1c1I{(x1,x2)R1}c2I{(x1,x2)R2}c3I{(x1,x2)R3}cI{(xx)R}cI{(xx)R}41,2451,25•Twotypes•Regressiontrees•Classificationtrees•FundamentalsIssuesinTree-basedModels•Howtodecidethesplit

7、tingpoint?(Treegrowing)•Howtocontrolthesizeofthetree?(Treepruning)7RegressionTrees•ForeachofNobservations,inputisxi=(xi1,xi2,…,xip),outputiscontinuousyi,•PartitionthespaceintoMregions:R1,R2,…,RM.Mf(x)cmI(xRm)m1•Thebestpartition:tominimizethesumof

8、squarederror:N2(yif(xi))i1caverage(y

9、xR)miim8ClassificationTrees•Forregressiontrees,impuritymeasureQm(T)121Q(T)ycˆ,wherecˆymimmiNmxiRmNmxiRm•Forclassificationtrees,impuritymeasureQm(T)1Misclassificationerror:I(yik(m))1pk(m),mNmiR

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。