Flexible mixture model for collaborative filtering.pdf

Flexible mixture model for collaborative filtering.pdf

ID:33849720

大小:95.87 KB

页数:8页

时间:2019-02-28

Flexible mixture model for collaborative filtering.pdf_第1页
Flexible mixture model for collaborative filtering.pdf_第2页
Flexible mixture model for collaborative filtering.pdf_第3页
Flexible mixture model for collaborative filtering.pdf_第4页
Flexible mixture model for collaborative filtering.pdf_第5页
资源描述:

《Flexible mixture model for collaborative filtering.pdf》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、FlexibleMixtureModelforCollaborativeFilteringLuoSiLSI@CS.CMU.EDURongJinRONG@CS.CMU.EDUSchoolofComputerScience,CarnegieMellonUniversity,Pittsburgh,PA15232USAAbstractusersinthetrainingdatabasesimilartothetestuserandthen,predictthetestuser’sratingsbasedontheThispaperpresen

2、tsaflexiblemixturemodelcorrespondingratingsofthesesimilarusers.Onthe(FMM)forcollaborativefiltering.FMMextendscontrary,model-basedalgorithmsbuildmodelsthatareexistingpartitioning/clusteringalgorithmsforabletoexplainthetrainingexampleswellandpredictthecollaborativefilteri

3、ngbyclusteringbothusersratingsoftestusersusingtheestimatedmodels.Bothofanditemstogethersimultaneouslywithoutthememory-basedalgorithmsandthemodel-basedassumingthateachuseranditemshouldonlyalgorithmshavetheiradvantagesanddisadvantages.belongtoasinglecluster.Furthermore,wi

4、ththeMemory-basedalgorithmshavemuchlessoff-lineintroductionof‘preference’nodes,theproposedcomputationcostswhilethemodel-basedalgorithmsmayframeworkisabletoexplicitlymodelhowusershavelesson-linecomputationcosts.rateitems,whichcanvarydramatically,evenamongtheuserswithsimi

5、lartastesonitems.Thoughmemory-basedandmodel-basedapproachesEmpiricalstudyovertwodatasetsofmoviedifferfromeachotherinmanyaspects,bothofthemratingshasshownthatournewalgorithmassumethatuserswithsimilartastesshouldrateitemsoutperformsfiveothercollaborativefilteringsimilarly

6、andthereforetheideaofclusteringisusedinalgorithmssubstantially.bothapproacheseitherexplicitlyorimplicitly.Formemory-basedapproaches,traininguserssimilartothetestuseraregroupedtogetherandtheirratingsare1.Introductioncombinedtopredictratingsforthetestuser.Meanwhile,model-

7、basedapproachesclusteritemsand/ortrainingTherapidgrowthoftheinformationontheInternetusersintoclassesexplicitlyandpredictratingsofatestdemandsintelligentinformationagentthatcansiftuserbysimplyusingtheratingsofclassesthatfitinbestthroughalltheavailableinformationandfindou

8、tthewiththetestuserand/oritemstoberated.Thus,howtomostvaluabletous.Theseintelligentsystemscanbeclusterusersand

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。