A generative probabilistic ocr model for nlp applications

A generative probabilistic ocr model for nlp applications

ID:37656732

大小:111.40 KB

页数:8页

时间:2019-05-27

A generative probabilistic ocr model for nlp applications_第1页
A generative probabilistic ocr model for nlp applications_第2页
A generative probabilistic ocr model for nlp applications_第3页
A generative probabilistic ocr model for nlp applications_第4页
A generative probabilistic ocr model for nlp applications_第5页
资源描述:

《A generative probabilistic ocr model for nlp applications》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、ProceedingsofHLT-NAACL2003MainPapers,pp.55-62Edmonton,May-June2003AGenerativeProbabilisticOCRModelforNLPApplicationsOkanKolakWilliamByrnePhilipResnikComputerScienceandUMIACSCLSPLinguisticsandUMIACSUniversityofMarylandTheJohnsHopkinsUniversityUniversityofMarylandCollegePark,MD20742,USABaltimore,

2、MD21218,USACollegePark,MD20742,USAokan@umiacs.umd.edubyrne@jhu.eduresnik@umiacs.umd.eduAbstractbythefactthatmostOCRsystemareblackboxesthatdonotallowusertuningorre-training—Baird(1999,re-Inthispaper,weintroduceagenerativeprob-portedin(Frederking,1999))commentsthatthelackofabilisticopticalcharact

3、errecognition(OCR)abilitytorapidlyretargetOCR/NLPapplicationstonewmodelthatdescribesanend-to-endprocessinlanguagesis“largelyduetothemonolithicstructureofthenoisychannelframework,progressingfromcurrentOCRtechnology,wherelanguage-specificcon-generationoftruetextthroughitstransforma-straintsaredeep

4、lyenmeshedwithalltheothercode.”tionintothenoisyoutputofanOCRsystem.Inthispaper,wedescribeacompleteprobabilistic,Themodelisdesignedforuseinerrorcorrec-generativemodelforOCR,motivatedspecificallyby(a)tion,withafocusonpost-processingtheoutputtheneedtodealwithmonolithicOCRsystems,(b)thefo-ofblack-bo

5、xOCRsystemsinordertomakecusonOCRasacomponentinNLPapplications,and(c)itmoreusefulforNLPtasks.WepresentantheultimategoalofusingOCRtohelpacquireresourcesimplementationofthemodelbasedonfinite-fornewlanguagesfromprintedtext.Afterpresentingstatemodels,demonstratethemodel'sabilitythemodelitself,wediscu

6、ssthemodel'simplementation,tosignificantlyreducecharacterandworder-training,anditsuseforpost-OCRerrorcorrection.Werorrate,andprovideevaluationresultsinvolv-thenpresenttwoevaluations:oneforstandaloneOCRingautomaticextractionoftranslationlexiconscorrection,andoneinwhichOCRisusedtoacquireafromprint

7、edtext.translationlexiconfromprintedtext.Weconcludewithadiscussionofrelatedresearchanddirectionsforfuture1Introductionwork.Althoughagreatdealoftextisnowavailableinelec-2TheModeltronicform,vastquantitiesofinformationstillexistpri-m

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。