mining local data sources for learning global cluster models via local model exchange

mining local data sources for learning global cluster models via local model exchange

ID:34642488

大小:136.35 KB

页数:7页

时间:2019-03-08

mining local data sources for learning global cluster models via local model exchange_第1页
mining local data sources for learning global cluster models via local model exchange_第2页
mining local data sources for learning global cluster models via local model exchange_第3页
mining local data sources for learning global cluster models via local model exchange_第4页
mining local data sources for learning global cluster models via local model exchange_第5页
资源描述:

《mining local data sources for learning global cluster models via local model exchange》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、16FeatureArticle:Xiao-FengZhang,Chak-ManLamandWilliamK.CheungMiningLocalDataSourcesForLearningGlobalClusterModelsViaLocalModelExchangeXiao-FengZhang,Chak-ManLam,WilliamK.Cheung,Member,IEEEAbstract—Distributeddatamininghasrecentlycaughtalottheoverallresult.Theyhaveappli

2、edittolearningBayesianofattentionastherearemanycaseswherepoolingdistributedNetworksforWebloganalysis[12],[8].dataforminingisprobibited,duetoeitherhugedatavolumeorRegardingincorporationoflocaldataprivacycontrolindataprivacy.Inthispaper,weaddressedtheissueoflearningadist

3、ributeddatamining,Cliftonetal.[13],[14],[15]andDuglobalclustermodel,knownasthelatentclassmodel,byminingdistributeddatasources.Mostoftheexistingmodellearningetal.[16],[17],[18]haveproposedsolutionstodistributedalgorithms(e.g.,EM)requireaccesstoalltheavailabletrainingass

4、ociationrulesminingwithprivacypreservingcapability.data.Instead,westudiedamethodologybasedonperiodicmodelUnderthepremisethatpartiesprefertosharethelocaldataexchangeandmerge,andappliedittoWebstructuremodeling.miningresultsinsteadoftheoriginallocaldata,eachpartyInadditio

5、n,wehavetestedanumberofvariationsofthebasicsitelearnsanddiscloseonlytheirlocalpatterns,whichwillidea,includingconfiningtheexchangetosomeprivacyfriendlyparametersandvaryingthenumberofdistributedsources.Ex-eventuallybeaggregatedtogethertoformsomeglobalpat-perimentalresult

6、sshowthattheproposeddistributedlearningterns.Otherthantakingassociatedrulemining,Meruguetal.schemeiseffectivewithaccuracyclosetothecasewithallthe[19],[20],[21],[22],[23]worksonminingglobalclustersdataphysicallysharedforthelearning.Also,ourresultsshow(intheformofGaussia

7、nmixturemodel)ofhighdimensionempiricallythatsharinglessmodelparametersasafurtherfeaturevectorswhicharedistributedindifferentsites.Theirmechanismforprivacycontroldoesnotresultinsignificantperformancedegradationforourapplication.proposedmethodstartswithcreatinglocalcluste

8、rmodelsandthenresamplingfromthecombinedmodels“virtual”globalIndexTerms—Distributeddatamining,model-basedlearning,late

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。