Learning Bayesian Networks with Local Structure

Learning Bayesian Networks with Local Structure

ID:39504489

大小:129.30 KB

页数:11页

时间:2019-07-04

Learning Bayesian Networks with Local Structure_第1页
Learning Bayesian Networks with Local Structure_第2页
Learning Bayesian Networks with Local Structure_第3页
Learning Bayesian Networks with Local Structure_第4页
Learning Bayesian Networks with Local Structure_第5页
资源描述:

《Learning Bayesian Networks with Local Structure》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、LearningBayesianNetworkswithLocalStructureNirFriedmanMoisesGoldszmidtStanfordUniversitySRIInternationalDept.ofComputerScience333RavenswoodWay,EK329GatesBuilding1AMenloPark,CA94025Stanford,CA94305-9010moises@erg.sri.comnir@cs.stanford.eduAbstractInthispaperw

2、eexamineanoveladditiontothe   knownmethodsforlearningBayesiannetworksPrfromdatathatimprovesthequalityofthelearned1110.95networks.Ourapproachexplicitlyrepresentsand1100.95learnsthelocalstructureintheconditionalproba-1010.201000.05bilityt

3、ables(CPTs),thatquantifythesenetworks.0110.000100.00Thisincreasesthespaceofpossiblemodels,en-0010.00ablingtherepresentationofCPTswithavariable0000.00numberofparametersthatdependsonthelearnedlocalstructures.TheresultinglearningprocedureFigure1:Asimplenetworkstr

4、uctureandtheassociatediscapableofinducingmodelsthatbetteremulateCPTfornode.therealcomplexityoftheinteractionspresentinthedata.Wedescribethetheoreticalfoundationsandpracticalaspectsoflearninglocalstructures,ABayesiannetworkrepresentsaprobabilitydistributionaswe

5、llasanempiricalevaluationoftheproposedwhoseparametersarespeci®edbyasetofCPTs.Eachmethod.ThisevaluationindicatesthatlearningnodeinthenetworkhasanassociatedCPTthatdescribescurvescharacterizingtheprocedurethatexploitstheconditionalprobabilitydistributionofthatnode

6、giventhelocalstructureconvergefasterthantheseofthedifferentvaluesforitsparents.Initsmostnaiveform,thestandardprocedure.OurresultsalsoshowaCPTisencodedusingatabularrepresentationwhichisthatnetworkslearnedwithlocalstructuretendtolocallyexponentialonthenumberofpar

7、entsofanode:bemorecomplex(intermsofarcs),yetrequireeachassignmentofvaluestotheparentsofanoderequireslessparameters.thespeci®cationofaconditionaldistributionoverthatnode.Thus,forexample,considerthesimplenetworkinFigure1,1Introductionwherethenodes,,andcorresp

8、ondtotheeventsªalarmarmed,ºªburglary,ºªearthquakeºandªloudalarmInrecentyearstherehasbeenagrowingnumberofinterest-sound,ºrespectively.Assumingthatallvariablesarebinary,ingres

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。