Learning Bayesian Networks

Learning Bayesian Networks

ID:40390168

大小:1.31 MB

页数:67页

时间:2019-08-01

Learning Bayesian Networks_第1页
Learning Bayesian Networks_第2页
Learning Bayesian Networks_第3页
Learning Bayesian Networks_第4页
Learning Bayesian Networks_第5页
资源描述:

《Learning Bayesian Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、BayesianLearningandLearningBayesianNetworksChapter20someslidesbyCristinaConatiOverviewFullBayesianLearningMAPlearningMaximunLikelihoodLearningLearningBayesianNetworks•Fullyobservable•Withhidden(unobservable)variablesFullBayesianLearningInthelearningmethodsweha

2、veseensofar,theideawasalwaystofindthebestmodelthatcouldexplainsomeobservationsIncontrast,fullBayesianlearningseeslearningasBayesianupdatingofaprobabilitydistributionoverthehypothesisspace,givendata•Histhehypothesisvariable•Possiblehypotheses(valuesofH)h…,h1n•P(H)=

3、priorprobabilitydistributionoverhypotesisspacejobservationdgivestheoutcomeofrandomvariableDthjj•trainingdatad=d,..,d1kFullBayesianLearningGiventhedatasofar,eachhypothesishhasaposterioriprobability:•P(h

4、d)=αP(d

5、h)P(h)(Bayestheorem)iii•whereP(d

6、h)iscalledthelikelih

7、oodofthedataundereachhypothesisiPredictionsoveranewentityXareaweightedaverageoverthepredictionofeachhypothesis:•P(X

8、d)=Thedatadoes=∑P(X,h

9、d)notaddiianythingtoa=∑P(X

10、h,d)P(h

11、d)iiipredictiongivenanhp=∑P(X

12、h)P(h

13、d)iii~∑P(X

14、h)P(d

15、h)P(h)iiii•Theweightsaregivenbythedata

16、likelihoodandpriorofeachhNoneedtopickonebest-guesshypothesis!ExampleSupposewehave5typesofcandybags•10%are100%cherrycandies(h)100•20%are75%cherry+25%limecandies(h)75•40%are50%cherry+50%limecandies(h)50•20%are25%cherry+75%limecandies(h)25•10%are100%limecandies(h)0•

17、ThenweobservecandiesdrawnfromsomebagLet’scallθtheparameterthatdefinesthefractionofcherrycandyinabag,andhthecorrespondinghypothesisθWhichofthefivekindsofbaghasgeneratedmy10observations?P(h

18、d).θWhatflavourwillthenextcandybe?PredictionP(X

19、d)ExampleIfwere-wrapeachc

20、andyandreturnittothebag,our10observationsareindependentandidenticallydistributed,i.i.d,so•P(d

21、h)=∏P(d

22、h)forj=1,..,10θjjθForagivenh,thevalueofP(d

23、h)isθjθ•P(d=cherry

24、h)=θ;P(d=lime

25、h)=(1-θ)jθjθAndgivenNobservations,ofwhichcarecherryandl=N-clime•Binomialdistribution:

26、probabilityof#ofsuccessesinasequenceofNindependenttrialswithbinaryoutcome,eachofwhichyieldssuccesswithprobabilityθ.Forinstance,afterobserving3li

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。