资源描述:
《Learning Bayesian Networks》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、BayesianLearningandLearningBayesianNetworksChapter20someslidesbyCristinaConatiOverviewFullBayesianLearningMAPlearningMaximunLikelihoodLearningLearningBayesianNetworks•Fullyobservable•Withhidden(unobservable)variablesFullBayesianLearningInthelearningmethodsweha
2、veseensofar,theideawasalwaystofindthebestmodelthatcouldexplainsomeobservationsIncontrast,fullBayesianlearningseeslearningasBayesianupdatingofaprobabilitydistributionoverthehypothesisspace,givendata•Histhehypothesisvariable•Possiblehypotheses(valuesofH)h…,h1n•P(H)=
3、priorprobabilitydistributionoverhypotesisspacejobservationdgivestheoutcomeofrandomvariableDthjj•trainingdatad=d,..,d1kFullBayesianLearningGiventhedatasofar,eachhypothesishhasaposterioriprobability:•P(h
4、d)=αP(d
5、h)P(h)(Bayestheorem)iii•whereP(d
6、h)iscalledthelikelih
7、oodofthedataundereachhypothesisiPredictionsoveranewentityXareaweightedaverageoverthepredictionofeachhypothesis:•P(X
8、d)=Thedatadoes=∑P(X,h
9、d)notaddiianythingtoa=∑P(X
10、h,d)P(h
11、d)iiipredictiongivenanhp=∑P(X
12、h)P(h
13、d)iii~∑P(X
14、h)P(d
15、h)P(h)iiii•Theweightsaregivenbythedata
16、likelihoodandpriorofeachhNoneedtopickonebest-guesshypothesis!ExampleSupposewehave5typesofcandybags•10%are100%cherrycandies(h)100•20%are75%cherry+25%limecandies(h)75•40%are50%cherry+50%limecandies(h)50•20%are25%cherry+75%limecandies(h)25•10%are100%limecandies(h)0•
17、ThenweobservecandiesdrawnfromsomebagLet’scallθtheparameterthatdefinesthefractionofcherrycandyinabag,andhthecorrespondinghypothesisθWhichofthefivekindsofbaghasgeneratedmy10observations?P(h
18、d).θWhatflavourwillthenextcandybe?PredictionP(X
19、d)ExampleIfwere-wrapeachc
20、andyandreturnittothebag,our10observationsareindependentandidenticallydistributed,i.i.d,so•P(d
21、h)=∏P(d
22、h)forj=1,..,10θjjθForagivenh,thevalueofP(d
23、h)isθjθ•P(d=cherry
24、h)=θ;P(d=lime
25、h)=(1-θ)jθjθAndgivenNobservations,ofwhichcarecherryandl=N-clime•Binomialdistribution:
26、probabilityof#ofsuccessesinasequenceofNindependenttrialswithbinaryoutcome,eachofwhichyieldssuccesswithprobabilityθ.Forinstance,afterobserving3li