nonparametric bayesian networks

nonparametric bayesian networks

ID:7305786

大小:672.72 KB

页数:40页

时间:2018-02-11

nonparametric bayesian networks_第1页
nonparametric bayesian networks_第2页
nonparametric bayesian networks_第3页
nonparametric bayesian networks_第4页
nonparametric bayesian networks_第5页
资源描述:

《nonparametric bayesian networks》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、NonparametricBayesianNetworks*UniversityPressScholarshipOnlineOxfordScholarshipOnlineBayesianStatistics9JoséM.Bernardo,M.J.Bayarri,JamesO.Berger,A.P.Dawid,DavidHeckerman,AdrianF.M.Smith,andMikeWestPrintpublicationdate:2011PrintISBN-13:9780199694587PublishedtoOxfordScholarshipOnline:Janua

2、ry2012DOI:10.1093/acprof:oso/9780199694587.001.0001NonparametricBayesianNetworks*KatjaIckstadtBjöornBornkampMarcoGrzegorczykJakobWieczorekMalikR.SheriffHernáanE.GreccoEliZamirDOI:10.1093/acprof:oso/9780199694587.003.0010AbstractandKeywordsAconvenientwayofmodellingcomplexinteractionsisbye

3、mployinggraphsornetworkswhichcorrespondtoconditionalindependencestructuresinanunderlyingstatisticalmodel.OnemainclassofmodelsinthisregardareBayesiannetworks,whichhavethedrawbackofmakingparametricassumptions.Bayesiannonparametricmixturemodelsofferapossibilitytoovercomethislimitation,butha

4、vehardlybeenusedincombinationwithnetworks.ThismanuscriptbridgesthisgapbyintroducingnonparametricBayesianPage1of40NonparametricBayesianNetworks*networkmodels.Wereview(parametric)Bayesiannetworks,inparticularGaussianBayesiannetworks,fromaBayesianperspectiveaswellasnonparametricBayesianmixt

5、uremodels.AfterwardsthesetwomodellingapproachesarecombinedintononparametricBayesiannetworks.ThenewmodelsarecomparedbothtoGaussianBayesiannetworksandtomixturemodelsinasimulationstudy,whereitturnsoutthatthenonparametricnetworkmodelsperformfavourablyinnon‐Gaussiansituations.Thenewmodelsarea

6、lsoappliedtoanexamplefromsystemsbiology,namelyfindingmoduleswithintheMAPKcascade.Keywords:GaussianBayesiannetworks,SystemsBiology,NonparametricMixtureModels,SpeciesSamplingModelsSummaryAconvenientwayofmodellingcomplexinteractionsisbyemployinggraphsornetworkswhichcorrespondtoconditionalin

7、dependencestructuresinanunderlyingstatisticalmodel.OnemainclassofmodelsinthisregardareBayesiannetworks,whichhavethedrawbackofmakingparametricassumptions.Bayesiannonparametricmixturemodelsofferapossibilitytoovercomethislimitation,buthavehardlybeenusedincombinationwithnetwo

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。