欢迎来到天天文库
浏览记录
ID:39784975
大小:25.71 KB
页数:3页
时间:2019-07-11
《数学北师大版八年级下册线段的垂直平分线 》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、线段的垂直平分线(一)知识目标:1.证明线段垂直平分线的性质定里和判定定理.2.经历探索、猜测、证明的过程,进一步发展学生的推理证明能力.丰富对几何图形的认识。教学重点、难点重点是运用几何符号语言证明垂直平分线的性质定理及其逆命题。难点是垂直平分线的性质定理在实际问题中的运用。第一环节:创设情境,引入新课教师用多媒体演示:如图,A、B表示两个仓库,要在A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建在什么位置?其中“到两个仓库的距离相等”,要强调这几个字在题中有很重要的作用.线段是一个轴对称图形,其中线段的垂直平分线就
2、是它的对称轴.我们用折纸的方法,根据折叠过程中线段重合说明了线段垂直平分线的一个性质:线段垂直平分线上的点到线段两个端点的距离相等.所以在这个问题中,要求在“A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等”利用此性质就能完成.进一步提问:“你能用公理或学过的定理证明这一结论吗?”第二环节:性质探索与证明教师鼓励学生思考,想办法来解决此问题。通过讨论和思考,引导学生分析并写出已知、求证的内容。已知:如图,直线MN⊥AB,垂足是C,且AC=BC,P是MN上的点.求证:PA=PB.分析:要想证明PA=PB,可以考虑包含这两条线段的两
3、个三角形是否全等.证明:∵MN⊥AB,∴∠PCA=∠PCB=90°∵AC=BC,PC=PC,∴△PCA≌△PCB(SAS).;∴PA=PB(全等三角形的对应边相等).教师用多媒体完整演示证明过程.第三环节:逆向思维,探索判定你能写出上面这个定理的逆命题吗?它是真命题吗?这个命题不是“如果……那么……”的形式,要写出它的逆命题,需分析原命题的条件和结论,将原命题写成“如果……那么……”的形式,逆命题就容易写出.鼓励学生找出原命题的条件和结论。原命题的条件是“有一个点是线段垂直平分线上的点”.结论是“这个点到线段两个端点的距离相等”.此时,
4、逆命题就很容易写出来.“如果有一个点到线段两个端点的距离相等,那么这个点在这条线段的垂直平分线上.”写出逆命题后时,就想到判断它的真假.如果真,则需证明它;如果假,则需用反例说明.引导学生分析证明过程,有如下四种证法:证法一:已知:线段AB,点P是平面内一点且PA=PB.求证:P点在AB的垂直平分线上.证明:过点P作已知线段AB的垂线PC,PA=PB,PC=PC,∴Rt△PAC≌Rt△PBC(HL定理).∴AC=BC,即P点在AB的垂直平分线上.证法二:取AB的中点C,过PC作直线.∵AP=BP,PC=PC.AC=CB,∴△APC≌△B
5、PC(SSS).∴∠PCA=∠PCB(全等三角形的对应角相等).又∵∠PCA+∠PCB=180°,∴∠PCA=∠PCB=∠90°,即PC⊥AB∴P点在AB的垂直平分线上.证法三:过P点作∠APB的角平分线.∵AP=BP,∠1=∠2,PC=PC,△APC≌△BPC(SAS).∴AC=BC,∠PCA=∠PCB(全等三角形的对应角相等,对应边相等).又∵∠PCA+∠PCB=180°∴∠PCA=∠PCB=90°∴P点在线段AB的垂直平分线上.证法四:过P作线段AB的垂直平分线PC.∵AC=CB,∠PCA=∠PCB=90°,∴P在AB的垂直平分线
6、上.从同学们的推理证明过程可知线段垂直平分线的性质定理的逆命题是真命题,我们把它称做线段垂直平分线的判定定理.第四环节:巩固应用在做完性质定理和判定定理的证明以后,引导学生进行总结:(1)线段的垂直平分线可以看成是到线段两个端点距离相等的所有点的集合。(2)到一条线段两个端点的距离相等个点在这条线段的垂直平分线上.因此只需做出这样的两个点即可做出线段的垂直平分线。第五环节:随堂练习课本P23;习题1.7:第1、2题第六环节:课堂小结:通过这节课的学习你有哪些新的收获?还有哪些困惑?第七环节:课后作业习题l.7第3、4题
此文档下载收益归作者所有