模板-向量组的线性相关性与线性方程组

模板-向量组的线性相关性与线性方程组

ID:39762312

大小:750.00 KB

页数:58页

时间:2019-07-11

模板-向量组的线性相关性与线性方程组_第1页
模板-向量组的线性相关性与线性方程组_第2页
模板-向量组的线性相关性与线性方程组_第3页
模板-向量组的线性相关性与线性方程组_第4页
模板-向量组的线性相关性与线性方程组_第5页
资源描述:

《模板-向量组的线性相关性与线性方程组》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第三章向量组的线性相关性与线性方程组第一节n维向量第二节 线性相关与线性无关第三节 线性相关性的判别定理第四节 向量组的秩与矩阵的秩第五节 矩阵的初等变换第六节 初等矩阵与求矩阵的逆第七节 向量空间§1n维向量定义1n个数组成的有序数组(a1,a2,…,an)称为一个n维向量,简称向量。用小写的粗黑体字母来表示向量。行向量列向量返回上一页下一页数a1,a2,…,an称为这个向量的分量。ai称为这个向量的第i个分量或坐标。分量都是实数的向量称为实向量;分量是复数的向量称为复向量。n维行向量可以看成1×n矩阵,n维列向量也常看成n×1矩阵。设k和l为两个任意的常数,为任意的n维

2、向量,其中返回上一页下一页定义2如果和对应的分量都相等,即ai=bi,i=1,2,…,n就称这两个向量相等,记为。定义3向量(a1+b1,a2+b2,…,an+bn)称为与的和,记为。称向量(ka1,ka2,…,kan)为与k的数量乘积,简称数乘,记为。返回上一页下一页定义4分量全为零的向量(0,0,…,0)称为零向量,记为0。与-1的数乘(-1)=(-a1,-a2,…,-an)称为的负向量,记为。向量的减法定义为向量的加法与数乘具有下列性质:返回上一页下一页满足(1)—(8)的运算称为线性运算。返回上一页下一页§2线性相关与线性无关矩阵与向量的关系:通常把维数相同的一组向

3、量简称为一个向量组,n维行向量组可以排列成一个s×n分块矩阵其中为由A的第i行形成的子块,称为A的行向量组。n维列向量组可以排成一个n×s矩阵其中为由B的第j列形成的子块,称为B的列向量组。返回上一页下一页定义5向量组称为线性相关的,如果有不全为零的数k1,k2,…,ks,使反之,如果只有在k1=k2=…=ks=0时上式才成立,就称线性无关。当是行向量组时,它们线性相关就是指有非零的1×s矩阵(k1,k2,…,ks)使返回上一页下一页当为列向量时,它们线性相关就是指有非零的s×1矩阵,使也可用矩阵形式表示:返回上一页下一页若所给向量均为行向量,则有若所给向量均为列向量,则有

4、返回上一页下一页例判断向量组的线性相关性。解假设存在一组常数k1,k2,…,kn使得所以即k1=k2=…=kn=0因此线性关。返回上一页下一页例设向量组线性无关,,,,试证向量组也线性无关。证假设存在一组常数k1,k2,k3使得由线性无关,故有由于满足k1,k2,k3的取值只有k1=k2=k3=0所以线性无关。返回上一页下一页定理1向量组(s≥2)线性相关的充要条件是其中至少有一个向量能由其他向量线性表出。证充分性:设中有一个向量能由其他向量线性表出,不妨设所以线性相关。必要性:如果线性相关,就有不全为零的数k1,k2,…,ks,使设k1≠0,那么即能由线性表出。返回上一页

5、下一页例如,向量组是线性相关的,因为对于只有两个向量a,b的向量组,由定理可得,a,b线性相关的充分必要条件是a,b的对应分量成比例。返回上一页下一页定理2设向量组线性无关,而向量组线性相关,则能由向量组线性表出,且表示式是唯一的。证由于线性相关,就有不全为零的数k1,k2,…,kt,k,使即可由线性表出。由线性无关有k≠0。(否则,    线性相关)返回上一页下一页设为任意两个表达式。且线性无关得到l1=h1,l2=h2,…,lt=ht因此表示式是唯一的。返回上一页下一页定义7如果向量组中每个向量都可以由线性表出,就称向量组可由线性表出,如果两个向量组互相可以线性表出,就

6、称它们等价。每一个向量组都可以经它自身线性表出。同时,如果向量组可以经向量组线性表出,向量组可以经向量组线性表出,那么向量组可以经向量组线性表出。返回上一页下一页向量组中每一个向量都可以经向量组线性表出。因而,向量组可以经向量组线性表出。如果有返回上一页下一页向量组的等价具有下述性质:(1)反身性:向量组与它自己等价;(2)对称性:如果向量组与等价,那么也与等价。(3)传递性:如果向量组与等价,而向量组又与等价,那么向量组与等价返回上一页下一页§3线性相关性的判别定理定理3有一个部分组线性相关的向量组线性相关。设这个部分组为。则有不全为零的数k1,k2,…,kr,使证设向量

7、组有一个部分组线性相关。因此也线性相关。推论含有零向量的向量组必线性相关。返回上一页下一页定理4设p1,p2,…,pn为1,2,…,n的一个排列,和为两向量组,其中即是对各分量的顺序进行重排后得到的向量组,则这两个向量组有相同的线性相关性。证对任意的常数k1,k2,…,ks,返回上一页下一页上两式只是各分量的排列顺序不同,因此当且仅当所以和有相同的线性相关性。返回上一页下一页(2)如果线性无关,那么也线性无关。定理5在r维向量组的各向量添上n-r个分量变成n维向量组。(1)如果线性相关,那么也线性相关。证对列向量来

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。