图形地平移与旋转

图形地平移与旋转

ID:39452746

大小:782.01 KB

页数:10页

时间:2019-07-03

图形地平移与旋转_第1页
图形地平移与旋转_第2页
图形地平移与旋转_第3页
图形地平移与旋转_第4页
图形地平移与旋转_第5页
资源描述:

《图形地平移与旋转》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、实用标准图形的平移与旋转【知识点梳理】一、平移定义和规律1.平移的定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移.注意:(1)平移不改变图形的形状和大小(也不会改变图形的方向,但改变图形的位置);(2)图形平移的要素:平移方向、平移距离.2.平移的规律(性质):经过平移,对应点所连的线段平行且相等,对应线段平行且相等、对应角相等.注意:平移后,原图形与平移后的图形全等.3.简单的平移作图平移作图,就是把整个图案的每一个特征点按一定方向和一定的距离平行移动.平移作图要注意:①方向;②距离

2、.二、旋转的定义和规律1.旋转的定义:在平面内,将一个图形饶一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.这个定点称为旋转中心,转动的角称为旋转角.关键:(1)旋转不改变图形的形状和大小(但会改变图形的方向,也改变图形的位置);(2)图形旋转的要素:旋转中心、旋转方向、旋转角.2.旋转的规律(性质):经过旋转,图形上的每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等.(旋转前后两个图形的对应线段相等、对应角相等.)注意:旋转后,

3、原图形与旋转后的图形全等.3.简单的旋转作图:旋转作图,就是把整个图案的每一个特征点绕旋转中心按一定的旋转方向和一定的旋转角度旋转移动.旋转作图要注意:①旋转方向;②旋转角度.文档大全实用标准【典题例题】【例1】、在下列实例中,不属于平移过程的有()①时针运行的过程;②火箭升空的过程;③地球自转的过程;④飞机从起跑到离开地面的过程。A、1个B、2个C、3个D、4个【例2】、如图所示的每个图形中的两个三角形是经过平移得到的是()ABCD【例3】、下列图形经过平移后恰好可以与原图形组合成一个长方形的是()A、三角形B

4、、正方形C、梯形D、都有可能【例4】、在图形平移的过程中,下列说法中错误的是()A、图形上任意点移动的方向相同B、图形上任意点移动的距离相同C、图形上可能存在不动的点D、图形上任意两点连线的长度不变【例5】、有关图形旋转的说法中错误的是()A、图形上每一点到旋转中心的距离相等B、图形上每一点移动的角度相同C、图形上可能存在不动点D、图形上任意两点连线的长度与旋转其对应两点连线的长度相等。【例6】、如右图所示,观察图形,下列结论正确的是()A、它是轴对称图形,但不是旋转对称图形;B、它是轴对称图形,又是旋转对称图形

5、;C、它是旋转对称图形,但不是轴对称图形;D、它既不是旋转对称图形,又不是轴对称图形。【例7】、下列图形中,既是轴对称图形,又是旋转对称图形的是()A、等腰三角形B、平行四边形C、等边三角形D、三角形【例8】、等边三角形的旋转中心是什么?旋转多少度能与原来的图形重合()A、三条中线的交点,60°B、三条高线的交点,120°C、三条角平分线的交点,60°D、三条中线的交点,180°【例9】、钟表上12时15分钟时,时针与分针的夹角为()A、90°B、82.5°C、67.5°D、60°文档大全实用标准【例10】、如图

6、1,△BOD的位置经过怎样的运动和△AOC重合()ABCDO图3A、翻折B、平移C、旋转90°D、旋转180°图1ACDBO【例11】、如右图3所示,∠AOB=∠COD=60°,OA=OB,OC=OD,把△AOC绕点O顺时针旋转60°,点A将与点重合,点C将与点重合.【例12】、正方形至少旋转能与自身重合,正六边形至少旋转能与自身重合。【例13】、如图4,等边三角形ABC旋转后能与等边三角形DBC重合,那么在图形所在的平面上可以作为旋转中心的点共有个。【例14】、如图5,△ABC≌△CDA,BD交AC于点O,则△

7、ABC绕点O旋转后与△CDA重合,△ABO可以由△CDO绕点旋转得到。ABCD图4ABCDO图5【例题15】将△平移后,A点移到A1点,请作出平移后的图形,并将此图形绕点C1逆时针旋转,再作出所得图形.【例题16】如图所示,正方形ABCD中E为BC边上的一点,将面ABE旋转后得到△CBF.(1)指出旋转中心及旋转角度;(2)判断AE与CF的位置关系;(3)如果正方形的面积为18cm2,△BCF的面积为4cm2,问四边形AECD的面积是多少?文档大全实用标准ABCFDEMN【例题17】如图,△ABC沿MN方向平移3

8、㎝后,成为△DEF。(1)点A的对应点是哪个点?(2)线段AD的长是多少?(3)∠ABC与∠DEF有何关系?(4)从图形中你发现了什么?说说你的理由。【例题18】如图所示,在等腰直角三角形ABC中,AD为斜边上的高,点E、F分别在AB、AC上,△AED经过旋转到了△CDF的位置。⑴△BED和△AFD之间可以看成是经过怎样的变换得到的?⑵AD与EF相交于点G,试判断∠AED

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。