条件概率与乘法公式

条件概率与乘法公式

ID:39283248

大小:2.71 MB

页数:27页

时间:2019-06-29

条件概率与乘法公式_第1页
条件概率与乘法公式_第2页
条件概率与乘法公式_第3页
条件概率与乘法公式_第4页
条件概率与乘法公式_第5页
资源描述:

《条件概率与乘法公式》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、1.4.1条件概率、乘法公式条件概率乘法公式小结在解决许多概率问题时,往往需要在有某些附加信息(条件)下求事件的概率.一、条件概率1.条件概率的概念如在事件B发生的条件下求事件A发生的概率,将此概率记作P(A

2、B).一般地P(A

3、B)≠P(A)例如,掷一颗均匀骰子,A={掷出4点},B={掷出偶数点},P(A

4、B)=?掷骰子已知事件B发生,此时试验所有可能结果构成的集合就是B,P(A

5、B)=1/3.B中共有3个元素,它们的出现是等可能的,其中只有1个在集A中.容易看到P(A

6、B)于是计算P(A

7、B)时,这个前提条件未变,只是加上“事件B已发生”这个新的条件.这好象给了我

8、们一个“情报”,使我们得以在某个缩小了的范围内来考虑问题.若事件B已发生,则为使A也发生,试验结果必须是既在B中又在A中的样本点,即此点必属于AB.由于我们已经知道B已发生,故B变成了新的样本空间,于是有(1).设A、B是两个事件,且P(B)>0,则称(1)2.条件概率的定义为在事件B发生的条件下,事件A的条件概率.3.条件概率的性质(自行验证)2)从加入条件后改变了的情况去算4.条件概率的计算1)用定义计算:P(B)>0掷骰子例:A={掷出2点},B={掷出偶数点}P(A

9、B)=B发生后的缩减样本空间所含样本点总数在缩减样本空间中A所含样本点个数例1掷两颗均匀骰子,已

10、知第一颗掷出6点,问“掷出点数之和不小于10”的概率是多少?解法1解法2解设A={掷出点数之和不小于10}B={第一颗掷出6点}应用定义在B发生后的缩减样本空间中计算由条件概率的定义:即若P(B)>0,则P(AB)=P(B)P(A

11、B)(2)而P(AB)=P(BA)二、乘法公式若已知P(B),P(A

12、B)时,可以反求P(AB).将A、B的位置对调,有故P(A)>0,则P(AB)=P(A)P(B

13、A)(3)若P(A)>0,则P(BA)=P(A)P(B

14、A)(2)和(3)式都称为乘法公式,利用它们可计算两个事件同时发生的概率注意P(AB)与P(A

15、B)的区别!请看下面的例子

16、例2甲、乙两厂共同生产1000个零件,其中300件是乙厂生产的.而在这300个零件中,有189个是标准件,现从这1000个零件中任取一个,问这个零件是乙厂生产的标准件的概率是多少?所求为P(AB).甲、乙共生产1000个189个是标准件300个乙厂生产300个乙厂生产设B={零件是乙厂生产},A={是标准件}所求为P(AB).设B={零件是乙厂生产}A={是标准件}若改为“发现它是乙厂生产的,问它是标准件的概率是多少?”求的是P(A

17、B).B发生,在P(AB)中作为结果;在P(A

18、B)中作为条件.甲、乙共生产1000个189个是标准件300个乙厂生产例3设某种动物由出生

19、算起活到20年以上的概率为0.8,活到25年以上的概率为0.4.问现年20岁的这种动物,它能活到25岁以上的概率是多少?解设A={能活20年以上},B={能活25年以上}依题意,P(A)=0.8,P(B)=0.4所求为P(B

20、A).条件概率P(A

21、B)与P(A)的区别每一个随机试验都是在一定条件下进行的,设A是随机试验的一个事件,则P(A)是在该试验条件下事件A发生的可能性大小.P(A)与P(A

22、B)的区别在于两者发生的条件不同,它们是两个不同的概念,在数值上一般也不同.而条件概率P(A

23、B)是在原条件下又添加“B发生”这个条件时A发生的可能性大小,即P(A

24、B)仍是概

25、率.乘法公式应用举例一个罐子中包含a个白球和r个红球.随机地抽取一个球,观看颜色后放回罐中,并且再加进c个与所抽出的球具有相同颜色的球.这种手续进行四次,试求第一、二次取到白球且第三、四次取到红球的概率.(波里亚罐子模型)b个白球,r个红球于是W1W2R3R4表示事件“连续取四个球,第一、第二个是白球,第三、四个是红球.”a个白球,r个红球随机取一个球,观看颜色后放回罐中,并且再加进c个与所抽出的球具有相同颜色的球.解设Ai={第i次取出是白球},i=1,2,3,4Ri={第j次取出是红球},i=1,2,3,4用乘法公式容易求出当c>0时,由于每次取出球后会增加下一次也

26、取到同色球的概率.这是一个传染病模型.每次发现一个传染病患者,都会增加再传染的概率.=P(W1)P(W2

27、W1)P(R3

28、W1W2)P(R4

29、W1W2R3)P(W1W2R3R4)一场精彩的足球赛将要举行,5个球迷好不容易才搞到一张入场券.大家都想去,只好用抽签的方法来解决.入场券5张同样的卡片,只有一张上写有“入场券”,其余的什么也没写.将它们放在一起,洗匀,让5个人依次抽取.后抽比先抽的确实吃亏吗?“先抽的人当然要比后抽的人抽到的机会大.”到底谁说的对呢?让我们用概率论的知识来计算一下,每个人抽到“入场券”的概率到底有多大?“大家不必争

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。