欢迎来到天天文库
浏览记录
ID:39258679
大小:631.51 KB
页数:42页
时间:2019-06-29
《代数学的新生—19世纪的代数学》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、18世纪的几何与代数分析的光芒使18世纪综合几何的发展暗然失色,但分析方法的应用却开拓出了一个崭新的几何分支,即微分几何,从而改变了18世纪几何学的面貌。“代数”在18世纪数学家心目中则是“分析”的同义语,他们将分析看作是代数的延伸。在这种情况下,18世纪的代数学为下个世纪的革命性发展做出了必要准备。1微分几何的形成微积分的创始人已经利用微积分研究曲线的曲率、拐点、渐伸线、渐屈线等而获得了属于微分几何范畴的部分结果。但微分几何成为独立的数学分支主要是在18世纪。1731年法国数学家克莱洛发表了《关于双重曲率曲线的研究》,开创了空间曲线理论,是建立微分几何
2、的重要一步。欧拉是微分几何的重要奠基人。他早在1736年就引进了平面曲线的内在坐标概念,即以曲线弧长作为曲线上点的坐标。在《无限小分析引论》第2卷中则引进了曲线的参数表示:x=x(s),y=y(s),z=z(s),欧拉将曲率定义为曲线的切线方向与一固定方向的交角相对于弧长的变化率,并推导了空间曲线任一点曲率半径的解析表达式欧拉的曲率定义是对克莱洛引进的空间曲线的两个曲率之一的标准化(另一个曲率,现在叫“挠率”,其解析表示到19世纪初才得到)。欧拉关于曲面论的经典工作《关于曲面上曲线的研究》(1760)被公认为微分几何史上的一个里程碑。欧拉在其中将曲面表示
3、为z=f(x,y),并引进了相当于的标准符号外,欧拉还正确地建立了曲面的曲率概念,引进了法曲率、主曲率等概念,并得到了法曲率的欧拉公式(其中是主曲率,是一法截面与主曲率所在法截面的交角)。1771年以后,欧拉还率先对可展曲面理论进行了研究,导出了曲面可展性的充分必要条件。18世纪微分几何的发展因蒙日的工作而臻于高峰。蒙日于1795年发表的《关于分析的几何应用的活页论文》是第一部系统的微分几何著述。他将空间曲线与曲面理论与微分方程紧密结合,在曲面簇、可展曲面及直纹面研究方面获得了大量深刻的结果。与大多数学数学家不同的是,蒙日不仅将分析应用于几何,同时也反过
4、来用几何去解释微分方程,从而推动后者的发展。他开创了偏微分方程的特征理论,引进了探讨偏微分方程的几何工具:特征曲线与特征锥(现称“蒙日锥”)等,它们至今仍是现代偏微分方程论中的重要概念。18世纪代数学的主题仍然是代数方程。在这个世纪的最后一年,年青的高斯在他的博士论文中公布了代数基本定理的第一个实质性证明。高斯的这一成果可以看作是18世纪方程论的一个漂亮的总结。代数基本定理断言n次代数方程恰有n个根。它最早是由荷兰数学家吉拉尔于1629年提出,后经笛卡尔、牛顿等众多学者反复陈述、应用,但均未给出证明。高斯的思想具有深刻的意义,因为其证明是纯粹存在性的。在
5、此之前,几乎所有的数学家都习惯于通过实际构造来证明问题解的存在。相对于代数基本定理而言,高次方程根式可解性问题显得并不怎么幸运。尽管未能在18世纪奏响解决的凯歌,但这个世纪的数学家们还是为此做出了历史性贡献,其中以拉格朗日的工作最为重要。他在1770年的一篇长文中探讨了一般三、四次方程能根式求解的原因,并猜测高次方程一般不能根式求解。1799年,拉格朗日的部分猜测被意大利的鲁菲尼所证实。可以说,他们已经走到了成功的边缘,虽然未能达到目标,却为下一世纪的最终冲刺指明了方向。方程组理论也是颇受关注的代数方程问题。首先是线性方程组与行列式理论。瑞士数学家克拉姆
6、在其《代数曲线分析引论》(1750)中提出了由系数行列式来确定线性代数方程组解的表达式的法则,即“克拉姆法则”。行列式理论在1772年被法国数学家范德蒙德系统化,自此成为独立的数学对象。范德蒙德用二阶子行列式及其余子式来展开行列式的法则,后来被拉普拉斯推广到一般情形而称为“拉普拉斯展开”。2方程论及其他与方程论相联系的是人们对数的认识。18世纪的数学家还谈不上有完整的数系概念和建立数系的企图。虽然在接受负数与复数方面还存有疑虑与争议,但在弄清复数的意义方面却也有些功绩。随着微积分的发展,复数几乎进入了所有的初等函数领域,并且在应用上卓有成效。达朗贝尔在1
7、747年关于一切复数均可以表示成形式a+bi的断言开始被多数人接受。1797年,丹麦数学家韦塞尔创造了复数的几何表示,并发展了复数的运算法则。等到1806年瑞士人阿尔冈、1831年高斯各自独立发表了关于复数几何表示的研究之后,笼罩着虚数的疑云终于被驱散开来。18世纪数学家在澄清无理数逻辑基础方面没有进展,但他们以相对平静的态度接受了一些数的无理性。欧拉在1737年证明了e是无理数。他的证明以连分数为基础,他得到e的连分数展开:因为他已经证明了每一个有理数都能表示成一个有限的连分数,所以e必定是无理数。1761年,兰伯特用类似方法证明了圆周率是无理数。稍
8、后勒让德甚至猜测说可能不是任何有理系数方程的根。这促使数学家们将无理数区分为代
此文档下载收益归作者所有