欢迎来到天天文库
浏览记录
ID:39196564
大小:1011.00 KB
页数:31页
时间:2019-06-26
《29解直角三角形》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、解直角三角形一、选择题1.(2014•孝感,第8题3分)如图,在▱ABCD中,对角线AC、BD相交成的锐角为α,若AC=a,BD=b,则▱ABCD的面积是( ) A.absinαB.absinαC.abcosαD.abcosα考点:平行四边形的性质;解直角三角形.分析:过点C作CE⊥DO于点E,进而得出EC的长,再利用三角形面积公式求出即可.解答:解:过点C作CE⊥DO于点E,∵在▱ABCD中,对角线AC、BD相交成的锐角为α,AC=a,BD=b,∴sinα=,∴EC=COsinα=asinα,∴S△BCD=CE×BD=×a
2、sinα×b=absinα,∴▱ABCD的面积是:absinα×2=absinα.故选;A.点评:此题主要考查了平行四边形的性质以及解直角三角形,得出EC的长是解题关键.2.(2014•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )[来源:Zxxk.Com] A.1,2,3B.1,1,C.1,1,D.1,2,考点:解直角三角形专题:新定义.分析:A、根据三角形三边关系可知,不能构成三角形,依此即可作出判定;B、根据勾股定
3、理的逆定理可知是等腰直角三角形,依此即可作出判定;C、解直角三角形可知是顶角120°,底角30°的等腰三角形,依此即可作出判定;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,依此即可作出判定.解答:解:A、∵1+2=3,不能构成三角形,故选项错误;B、∵12+12=()2,是等腰直角三角形,故选项错误;C、底边上的高是=,可知是顶角120°,底角30°的等腰三角形,故选项错误;D、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正
4、确.故选:D.点评:考查了解直角三角形,涉及三角形三边关系,勾股定理的逆定理,等腰直角三角形的判定,“智慧三角形”的概念.3.(2014•扬州,第8题,3分)如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=( )(第2题图) A.B.C.D.﹣2考点:全等三角形的判定与性质;三角形的面积;角平分线的性质;含30度角的直角三角形;勾股定理专题:计算题.分析:连接AC,通过三角形全等,求得∠BAC=30°,从而求
5、得BC的长,然后根据勾股定理求得CM的长,连接MN,过M点作ME⊥ON于E,则△MNA是等边三角形求得MN=2,设NF=x,表示出CF,根据勾股定理即可求得MF,然后求得tan∠MCN.解答:解:∵AB=AD=6,AM:MB=AN:ND=1:2,∴AM=AN=2,BM=DN=4,连接MN,连接AC,∵AB⊥BC,AD⊥CD,∠BAD=60°在Rt△ABC与Rt△ADC中,,∴Rt△ABC≌Rt△ADC(LH)∴∠BAC=∠DAC=∠BAD=30°,MC=NC,∴BC=AC,∴AC2=BC2+AB2,即(2BC)2=BC2+AB
6、2,3BC2=AB2,∴BC=2,在Rt△BMC中,CM===2.∵AN=AM,∠MAN=60°,∴△MAN是等边三角形,∴MN=AM=AN=2,[来源:Z。xx。k.Com]过M点作ME⊥ON于E,设NE=x,则CE=2﹣x,∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,解得:x=,∴EC=2﹣=,[来源:Zxxk.Com]∴ME==,∴tan∠MCN==故选A.点评:此题考查了全等三角形的判定与性质,勾股定理以及解直角三角函数,熟练掌握全等三角形的判定与性质是解本题的关键.4.(2014•滨州,第1
7、1题3分)在Rt△ACB中,∠C=90°,AB=10,sinA=,cosA=,tanA=,则BC的长为() A.6B.7.5C.8D.12.5考点:解直角三角形分析:根据三角函数的定义来解决,由sinA==,得到BC==.解答:解:∵∠C=90°AB=10,∴sinA=,∴BC=AB×=10×=6.故选A.点评:本题考查了解直角三角形和勾股定理的应用,注意:在Rt△ACB中,∠C=90°,则sinA=,cosA=,tanA=.5.(2014•德州,第7题3分)如图是拦水坝的横断面,斜坡AB的水平宽度为12米,斜面坡度为1:2,
8、则斜坡AB的长为( ) A.4米B.6米C.12米D.24米考点:解直角三角形的应用-坡度坡角问题.分析:先根据坡度的定义得出BC的长,进而利用勾股定理得出AB的长.解答:[来源:学§科§网Z§X§X§K]解:在Rt△ABC中,∵=i=,AC=12米,∴BC=6米,根据勾股
此文档下载收益归作者所有