复平面上解析Banach空间拟不变子空间的指标

复平面上解析Banach空间拟不变子空间的指标

ID:39123249

大小:733.25 KB

页数:36页

时间:2019-06-25

复平面上解析Banach空间拟不变子空间的指标_第1页
复平面上解析Banach空间拟不变子空间的指标_第2页
复平面上解析Banach空间拟不变子空间的指标_第3页
复平面上解析Banach空间拟不变子空间的指标_第4页
复平面上解析Banach空间拟不变子空间的指标_第5页
资源描述:

《复平面上解析Banach空间拟不变子空间的指标》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、硕士学位论文论文题目复平面上解析Banach空间拟不变子空间的指标研究生姓名罗晴指导教师姓名卫淑云专业名称基础数学研究方向泛函分析论文提交日期2013-04€²ŒÆÆØ©ÕM5(²9¦^Ç(²ÆØ©ÕM5(²LïĤJ,•Ø¹•¼€²ŒÆ½Ù§˜ÅÆyÖ¦^Lá.é©ïÄŠÑ•‡z‡<Ú8N,þ®3©¥±²(•ªI².<«ú(²{ÆI?.ïÄ)¶:Fϵ€²ŒÆÆØ©¦^Ç(²

2、<)€²ŒÆ'uÂ8!•Ú¦^ÆØ©5½,=:ÆØ©ÍŠ8ဲŒÆ.ÆØ©>f© SNÚ’ŸØ©SNƒ˜—.€²ŒÆk•I[ãÖ,!¥I‰©z&Eœ¥%!¥I‰ÆEâ&EïĤ£¹•êâ>fч¤!¥IÆâÏr£1‡¤>f,“xÆØ©E<‡Ú>f©,#NØ©Ú/,Œ±æ^K

3、©·‚

4、^"‘˜?ê•{‰ÑE²¡þ)ÛBanach˜m•3?¿•I½½n,Š•A^,·‚y²Fock.˜mZp1pjzj2F(C)=ff2Hol(C):jf(z)jedA(z)<+1gC†Hilbert˜mZ12jzjH=ff2Hol(C):jf(z)jedA(z)<+1gCäk?¿•I.'…cµ•I,)Û,E²¡,[ØCf˜m.Šö:Ûš•“:¥Ô(Ç)IAbstractTheindexofquasi-invariantsubspacesinBanachspacesTheindexofquasi-invariantsubsp

5、acesinBanachspacesofanalyticfunctionsoverthecomplexplaneAbstractInthispaper,welistgeneralconditionsonBanachspacesofanalyticfunctionsoverthecomplexplaneimplyingtheexistenceofquasi-invariantsubspacesofarbitraryindex,anduselacunarypowerseriestoproveitscorrectness.Asapplication,weal

6、sodescribethattheFockspaceZp1pjzj2F(C)=ff2Hol(C):jf(z)jedA(z)<+1gCandHilbertspaceZ12jzjH=ff2Hol(C):jf(z)jedA(z)<+1gCcontainquasi-invariantsubspacesofarbitraryindex.Keywords:index,analytic,complexplane,quasi-invariantsubspace.WrittenbyLuoQingSupervisedbyProf.WeiShuyunII8¹1˜ÙÚ

7、óÚO.......................................................11Ù?¿•I½½n...............................................31nÙFock.˜m?¿•I•35.....................................171oÙ˜„˜m•3?¿•I~f......................................23ë•©z..........................................

8、.....................27—...................................................................29E²¡þ)ÛBanach˜m[ØCf˜m•I1˜ÙÚóÚO1˜ÙÚóÚORHardy˜mH2´düþ÷vff:limjf(rei)j2d<+1g)Û¼r!1jzj=rê

9、¤Hilbert˜m.ŠâBeurling½n,éHardy˜mz‡š"ØCf˜mM,Ñ•3S¼ê,¦M=H2.ldim(M=zM)=1,=Hardy˜mz‡š"ØCf˜mM

10、•IÑ•1[1].RDirichlet˜m´düþ÷vff:1jf0(z)j2dm(z)<

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。