Banach空间中的β算子

Banach空间中的β算子

ID:37045541

大小:479.39 KB

页数:45页

时间:2019-05-15

Banach空间中的β算子_第1页
Banach空间中的β算子_第2页
Banach空间中的β算子_第3页
Banach空间中的β算子_第4页
Banach空间中的β算子_第5页
资源描述:

《Banach空间中的β算子》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、理学硕士学位论文Banach空间中的β算子张佳宁哈尔滨理工大学2018年3月国内图书分类号:O177理学硕士学位论文Banach空间中的β算子硕士研究生:张佳宁导师:樊丽颖副教授申请学位级别:理学硕士学科、专业:数学所在单位:理学院答辩日期:2018年3月授予学位单位:哈尔滨理工大学ClassifiedIndex:O177DissertationfortheMasterDegreeinScienceTheβoperatorofBanachSpaceCandidate:ZhangJianingSupervisor:A/Prof.FanLiyingAcademicDegreeApplie

2、dfor:MasterofScienceSpecialty:MathematicsDateofOralExamination:March,2018HarbinUniversityofScienceandUniversity:Technology哈尔滨理工大学硕士学位论文原创性声明本人郑重声明:此处所提交的硕士学位论文《Banach空间中的β算子》,是本人在导师指导下,在哈尔滨理工大学攻读硕士学位期间独立进行研究工作所取得的成果。据本人所知,论文中除已注明部分外不包含他人已发表或撰写过的研究成果。对本文研究工作做出贡献的个人和集体,均已在文中以明确方式注明。本声明的法律结果将完全由本人

3、承担。作者签名:张佳宁日期:2018年3月29日哈尔滨理工大学硕士学位论文使用授权书《Banach空间中的β算子》系本人在哈尔滨理工大学攻读硕士学位期间在导师指导下完成的硕士学位论文。本论文的研究成果归哈尔滨理工大学所有,本论文的研究内容不得以其它单位的名义发表。本人完全了解哈尔滨理工大学关于保存、使用学位论文的规定,同意学校保留并向有关部门提交论文和电子版本,允许论文被查阅和借阅。本人授权哈尔滨理工大学可以采用影印、缩印或其他复制手段保存论文,可以公布论文的全部或部分内容。本学位论文属于保密□,在年解密后适用授权书。不保密。(请在以上相应方框内打√)作者签名:张佳宁日期:2018

4、年3月29日导师签名:樊丽颖日期:2018年3月29日哈尔滨理工大学理学硕士学位论文Banach空间中的β算子摘要Banach空间几何理论是近代泛函分析的重要分支,内容十分丰富,其中Banach空间的算子理论和不动点理论是不可分割的一部分,运用算子的不同性质不仅可以研究Banach空间的算子之间的关系,与此同时也可以研究空间上算子的性质与空间性质的关系,具有不同性质的Banach空间有弱不动点性质。本文主要对Banach空间中的β性质进行研究推广,并在Orlicz空间和Musielak-Orlicz空间对β性质的推广定义进行研究,整篇文章包括了四个方面的研究内容。首先,本文介绍了课题

5、的研究背景、目的及意义,对Banach空间几何理论、算子理论、不动点理论、Orlicz空间理论和Musielak-Orlicz空间及其发展做出简要介绍,并且简要的展示了本文的主要研究内容。其次,以Banach空间中的β算子研究及其相关几何性质的推广为中心,给出了β算子和弱β算子的定义,讨论了β算子和弱β算子的性质,进一步得到了算子具有β性质的充分必要条件、β算子与具有β性质的空间之间的关系,研究了β算子空间的定义及此空间的性质,得到了β算子是紧算子的判别条件,给出了自反空间一个新的特征。*最后,利用Banach空间的wβ性质,在Orlicz空间进行推广,分别讨论*不同范数意义下的空间

6、l具有wβ性质的必要条件。在Musileak-Orlicz空间中M0对k−β点进行推广研究,得出Musielak-Orlicz空间l上的单位球面上的点为Φk−β点的充分必要条件。*关键词β算子;wβ算子;wβ性质;Orlicz空间;k−β点;Musileak-Orlicz空间-I-哈尔滨理工大学理学硕士学位论文TheβPropertyofBanachSpaceAbstractGeometrictheoryofBanachspaceisanimportantbranchoffunctionalanalysisinmoderntimes.Anditscontentsareveryrich

7、.TheoperatortheoryandthefixedpointtheoryofBanachspaceareinseparableparts.WecanusethedifferentpropertiesoftheoperatornotonlytostudytherelationshipbetweenoperatorsinBanachspaces,butalsotostudytherelationbetweenthepropertyoftheoperat

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。