欢迎来到天天文库
浏览记录
ID:38955302
大小:363.50 KB
页数:25页
时间:2019-06-22
《《独立性检验》PPT课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、独立性检验的基本思想及其初步应用定量变量的取值一定是实数,它们的取值大小有特定的含义,不同取值之间的运算也有特定的含义.如身高、体重、考试成绩、温度等等.变量定量变量分类变量例如身高、体重、考试成绩等,张明的身高是180cm,李立的身高是175cm,说明张明比李立高180-175=5(cm).两个定量变量的相关关系分析:回归分析(画散点图、相关系数r、相关指数R2、残差分析)对于性别变量,其取值为男和女两种,这种变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.在日常生活中,主要考虑分
2、类变量之间是否有关系:如是否吸烟、宗教信仰、是否患肺癌、国籍等等.例如,吸烟是否与患肺癌有关系?性别是否对于喜欢数学课程有影响?等等.分类变量也称为属性变量或定性变量,它们的取值一定是离散的,而且不同的取值仅表示个体所属的类别,如性别变量,只取男、女两个值,商品的等级变量只取一级、二级、三级等等.有时也可以把分类变量的不同取值用数字来表示,但这时的数字除了分类以外没有其他的含义,例如用0表示“男”,1表示“女”,性别变量就变成取值为0和1的随机变量,但是这些数字没有其他的含义.此时比较性别变量的两个不
3、同值之间的大小没有意义,性别变量的均值和方差也没有意义.两个分类变量的相关关系的分析:通过图形直观判断两个分类变量是否相关;独立性检验.不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计9874919965由列联表可以粗略估计出,在不吸烟者中,有0.54%患有肺癌;在吸烟者中,有2.28%患有肺癌。因此,直观上可以得到结论:吸烟者和不吸烟者患肺癌的可能性存在差异.与表格相比,三维柱形图和二维条形图能更直观地反映出相关数据的总体状况.为调查吸烟是否对患肺癌有影响,某肿瘤研究所随机地
4、调查了9965人,得到如下结果(单位:人):吸烟与患肺癌列联表(列出两个分类变量的频数表):不患肺癌患肺癌总计不吸烟7775427817吸烟2099492148总计98749199651、列联表2、三维柱形图3、二维条形图不患肺癌患肺癌吸烟不吸烟不患肺癌患肺癌吸烟不吸烟080007000600050004000300020001000从三维柱形图能清晰看出各个频数的相对大小.从二维条形图能看出,吸烟者中患肺癌的比例高于不患肺癌的比例.不吸烟吸烟患肺癌比例不患肺癌比例4、等高条形图等高条形图更清晰地表达
5、了两种情况下患肺癌的比例.上面我们通过分析数据和图形,得到的直观印象是吸烟和患肺癌有关,那么事实是否真的如此呢?这需要用统计观点来考察这个问题.现在想要知道能够以多大的把握认为“吸烟与患肺癌有关”,为此先假设:H0:吸烟与患肺癌没有关系不患肺癌患肺癌总计不吸烟aba+b吸烟cdc+d总计a+cb+da+b+c+d把数字用字母代替,得到如下用字母表示的列联表:不患肺癌患肺癌总计不吸烟aba+b吸烟cdc+d总计a+cb+da+b+c+d吸烟与患肺癌的列联表:如果“吸烟与患肺癌没有关系”,则在吸烟者中不患
6、肺癌的比例应该与不吸烟者中相应的比例应差不多,即
7、ad-bc
8、越小,说明吸烟与患肺癌之间关系越弱;
9、ad-bc
10、越大,说明吸烟与患肺癌之间关系越强.以A表示不吸烟,B表示不患肺癌,则a表示事件AB发生的频数;a+b和a+c恰好分别为事件A和B发生的频数.患病不患病总计吸烟aba+b不吸烟cdc+d总计a+cb+da+b+c+d列出2×2列联表假设H0:吸烟和患病之间没有关系即H0:P(AB)=P(A)P(B)其中A为某人吸烟,B为某人患病设n=a+b+c+d则P(A)P(B)故P(AB)吸烟且患病人数
11、吸烟但未患病人数不吸烟但患病人数不吸烟且未患病人数怎样描述实际观测值与估计值的差异呢?统计学中采用即为了使不同样本容量的数据有统一的评判标准,基于上述分析,我们构造一个随机变量若H0成立,即“吸烟与患肺癌没有关系”,则K2应很小.由列联表中数据,利用公式(1)计算得K2的观测值为:(1)其中n=a+b+c+d为样本容量.10.8287.8796.6355.0243.8412.7062.0721.3230.7080.445k0.0010.0050.0100.0250.050.100.150.50.400
12、.50在H0成立的情况下,统计学家估算出如下的概率:但这种判断会犯错误,犯错误的概率不会超过0.01,即我们有99%的把握认为“吸烟与患肺癌有关系”.也就是说,在H0成立的情况下,对随机变量K2进行多次观测,观测值超过6.635的频率约为0.01,是一个小概率事件.现在K2的观测值,远远大于6.635,所以有理由断定H0不成立,即认为“吸烟与患肺癌有关系”利用随机变量K2来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验.
此文档下载收益归作者所有