全等三角形(专题讲解版)

全等三角形(专题讲解版)

ID:38648640

大小:169.00 KB

页数:8页

时间:2019-06-17

全等三角形(专题讲解版)_第1页
全等三角形(专题讲解版)_第2页
全等三角形(专题讲解版)_第3页
全等三角形(专题讲解版)_第4页
全等三角形(专题讲解版)_第5页
资源描述:

《全等三角形(专题讲解版)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、全等三角形专题讲解专题一全等三角形判别方法的应用专题概说:判定两个三角形全等的方法一般有以下4种:1.三边对应相等的两个三角形全等(简写成“SSS”)2.两边和它们的夹角对应相等的两个三角形全等(简写成“SAS”)3.两角和它们的夹边对应相等的两个三角形全等(简写成“ASA”)4.两个角和其中一个角的对边对应相等的两个三角形全等(简写成“AAS”)而在判别两个直角三角形全等时,除了可以应用以上4种判别方法外,还可以应用“斜边、直角边”,即斜边和一条直角边对应相等的两个直角三角形全等(简写成“HL”).也就是说“斜边、直角边”是判别两个直角三角形全等的特有的方法,它仅适用于判别

2、两个直角三角形全等.三角形全等是证明线段相等,角相等最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.那么我们应该怎样应用三角形全等的判别方法呢?(1)条件充足时直接应用在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等,而从近年的中考题来看,这类试题难度不大,证明两个三角形的条件比较充分.只要同学们认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.例1已知:如图1,CE⊥AB于点E,BD⊥AC于点D,BD、CE交于点O,且AO平分

3、∠BAC.那么图中全等的三角形有___对.图1分析:由CE⊥AB,BD⊥AC,得∠AEO=∠ADO=90º.由AO平分∠BAC,得∠EAO=∠DAO.又AO为公共边,所以△AEO≌△ADO.所以EO=DO,AE=AD.又∠BEO=∠CDO=90º,∠BOE=∠COD,所以△BOE≌△COD.由AE=AD,∠AEO=∠ADO=90º,∠BAC为公共角,所以△EAC≌DAO.所以AB=AC.又∠EAO=∠DAO,AO为公共边,所以△ABO≌△ACO.所以图中全等的三角形一共有4对.(2)条件不足,会增加条件用判别方法此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件

4、不充分,需要补充使三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,逐步分析,探索结论成立的条件,从而得出答案.例2如图2,已知AB=AD,∠1=∠2,要使△ABC≌△ADE,还需添加的条件是(只需填一个)_____.图2分析:要使△ABC≌△ADE,注意到∠1=∠2,所以∠1+∠DAC=∠2+∠DAC,即∠BAC=∠EAC.要使△ABC≌△ADE,根据SAS可知只需AC=AE即可;根据ASA可知只需∠B=∠D;根据AAS可知只需∠C=∠E.故可添加的条件是AC=AE或∠B=∠D或∠C=∠E.(3)条件比较隐蔽时,可通过添加辅助线用判别方法图3在证明两个三角形全等

5、时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.例3已知:如图3,AB=AC,∠1=∠2.求证:AO平分∠BAC.分析:要证AO平分∠BAC,即证∠BAO=∠BCO,要证∠BAO=∠BCO,只需证∠BAO和∠BCO所在的两个三角形全等.而由已知条件知,只需再证明BO=CO即可.8证明:连结BC.因为AB=AC,所以∠ABC=∠ACB.因为∠1=∠2,所以∠ABC-∠1=∠ACB-∠2.即∠3=∠4,所以BO=CO.因为AB=AC,BO=CO,AO=AO,所以△ABO≌△ACO.所以∠B

6、AO=∠CAO,即AO平分∠BAC.(4)条件中没有现成的全等三角形时,会通过构造全等三角形用判别方法有些几何问题中,往往不能直接证明一对三角形全等,一般需要作辅助线来构造全等三角形.图4例4已知:如图4,在Rt△ABC中,∠ACB=90º,AC=BC,D为BC的中点,CE⊥AD于E,交AB于F,连接DF.求证:∠ADC=∠BDF.证明:过B作BG⊥BC交CF延长线于G,所以BG∥AC.所以∠G=∠ACE.因为AC⊥BC,CE⊥AD,所以∠ACE=∠ADC.所以∠G=∠ADC.因为AC=BC,∠ACD=∠CBG=90º,所以△ACD≌△CBG.所以BG=CD=BD.因为∠CB

7、F=∠GBF=45º,BF=BF,所以△GBF≌△DBF.所以∠G=∠BDF.所以∠ADC=∠BDF.所以∠ADC=∠BDF.说明:常见的构造三角形全等的方法有如下三种:①涉及三角形的中线问题时,常采用延长中线一倍的方法,构造出一对全等三角形;②涉及角平分线问题时,经过角平分线上一点向两边作垂线,可以得到一对全等三角形;③证明两条线段的和等于第三条线段时,用“截长补短”法可以构造一对全等三角形.(5)会在实际问题中用全等三角形的判别方法新课标强调了数学的应用价值,注意培养同学们应用数学的意识,形成解决简

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。