导数和复数知识要点

导数和复数知识要点

ID:38629152

大小:218.40 KB

页数:8页

时间:2019-06-16

导数和复数知识要点_第1页
导数和复数知识要点_第2页
导数和复数知识要点_第3页
导数和复数知识要点_第4页
导数和复数知识要点_第5页
资源描述:

《导数和复数知识要点》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、导数知识要点导数导数的概念导数的运算导数的应用导数的几何意义、物理意义函数的单调性函数的极值函数的最值常见函数的导数导数的运算法则1.导数(导函数的简称)的定义:设是函数定义域的一点,如果自变量在处有增量,则函数值也引起相应的增量;比值称为函数在点到之间的平均变化率;如果极限存在,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=.注:①是增量,我们也称为“改变量”,因为可正,可负,但不为零.②以知函数定义域为,的定义域为,则与关系为.2.函数在点处连续与点处可导的关系:⑴函数在点处连续是

2、在点处可导的必要不充分条件.可以证明,如果在点处可导,那么点处连续.事实上,令,则相当于.于是⑵如果点处连续,那么在点处可导,是不成立的.例:在点处连续,但在点处不可导,因为,当>0时,;当<0时,,故不存在.注:①可导的奇函数函数其导函数为偶函数.②可导的偶函数函数其导函数为奇函数.3.导数的几何意义:函数在点处的导数的几何意义就是曲线在点处的切线的斜率,也就是说,曲线在点P处的切线的斜率是,切线方程为4.求导数的四则运算法则:(为常数)注:①必须是可导函数.②若两个函数可导,则它们和、差、积、商

3、必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导.例如:设,,则在处均不可导,但它们和在处均可导.5.复合函数的求导法则:或复合函数的求导法则可推广到多个中间变量的情形.6.函数单调性:⑴函数单调性的判定方法:设函数在某个区间内可导,如果>0,则为增函数;如果<0,则为减函数.⑵常数的判定方法;如果函数在区间内恒有=0,则为常数.注:①是f(x)递增的充分条件,但不是必要条件,如在上并不是都有,有一个点例外即x=0时f(x)=0,同样是f(x)递减的充分非必要条件.②一般地,如果f(x

4、)在某区间内有限个点处为零,在其余各点均为正(或负),那么f(x)在该区间上仍旧是单调增加(或单调减少)的.7.极值的判别方法:(极值是在附近所有的点,都有<,则是函数的极大值,极小值同理)当函数在点处连续时,①如果在附近的左侧>0,右侧<0,那么是极大值;②如果在附近的左侧<0,右侧>0,那么是极小值.也就是说是极值点的充分条件是点两侧导数异号,而不是=0①.此外,函数不可导的点也可能是函数的极值点②.当然,极值是一个局部概念,极值点的大小关系是不确定的,即有可能极大值比极小值小(函数在某一点附近

5、的点不同).注①:若点是可导函数的极值点,则=0.但反过来不一定成立.对于可导函数,其一点是极值点的必要条件是若函数在该点可导,则导数值为零.例如:函数,使=0,但不是极值点.②例如:函数,在点处不可导,但点是函数的极小值点.8.极值与最值的区别:极值是在局部对函数值进行比较,最值是在整体区间上对函数值进行比较.注:函数的极值点一定有意义.9.几种常见的函数导数:I.(为常数)()II.III.求导的常见方法:①常用结论:.②形如或两边同取自然对数,可转化求代数和形式.③无理函数或形如这类函数,如取

6、自然对数之后可变形为,对两边求导可得复数知识要点1.⑴复数的单位为i,它的平方等于-1,即.⑵复数及其相关概念:①复数—形如a+bi的数(其中);②实数—当b=0时的复数a+bi,即a;③虚数—当时的复数a+bi;④纯虚数—当a=0且时的复数a+bi,即bi.⑤复数a+bi的实部与虚部—a叫做复数的实部,b叫做虚部(注意a,b都是实数)⑥复数集C—全体复数的集合,一般用字母C表示.⑶两个复数相等的定义:.⑷两个复数,如果不全是实数,就不能比较大小.注:①若为复数,则若,则.(×)[为复数,而不是实数

7、]若,则.(√)②若,则是的必要不充分条件.(当,时,上式成立)2.⑴复平面内的两点间距离公式:.其中是复平面内的两点所对应的复数,间的距离.由上可得:复平面内以为圆心,为半径的圆的复数方程:.⑵曲线方程的复数形式:①为圆心,r为半径的圆的方程.②表示线段的垂直平分线的方程.③为焦点,长半轴长为a的椭圆的方程(若,此方程表示线段).④表示以为焦点,实半轴长为a的双曲线方程(若,此方程表示两条射线).⑶绝对值不等式:设是不等于零的复数,则①.左边取等号的条件是,右边取等号的条件是.②.左边取等号的条件

8、是,右边取等号的条件是.注:.3.共轭复数的性质:,(a+bi)()注:两个共轭复数之差是纯虚数.(×)[之差可能为零,此时两个复数是相等的]4⑴①复数的乘方:②对任何,及有③注:①以上结论不能拓展到分数指数幂的形式,否则会得到荒谬的结果,如若由就会得到的错误结论.②在实数集成立的.当为虚数时,,所以复数集内解方程不能采用两边平方法.⑵常用的结论:若是1的立方虚数根,即,则.5.⑴复数是实数及纯虚数的充要条件:①.②若,是纯虚数.⑵模相等且方向相同的向量,不管它的起点

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。