欢迎来到天天文库
浏览记录
ID:38564325
大小:210.00 KB
页数:5页
时间:2019-06-15
《反比例函总复习》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、表一:反比例函数总复习教学设计(初稿)学科数学设计者吕小红执教时间2016.11.25教学目标1、理解反比例函数的意义,能根据已知条件确定反比例函数的解析式,能画出反比例函数的图象 2、能够将反比例函数有关的实际应用题转化为函数问题教学重点反比例函数图象与性质教学难点反比例函数图象、性质的应用教学准备小黑板,多媒体,导学案教学过程一、知识点复习1、在下列函数中,y是x反比例函数的是()A.B.C.D.2、已知函数是反比例函数,则m=※知识点:反比例函数的定义:一般地,形如的函数关系式是反比例函数。反比例函数的三种等价形式:①②③3、已知反比例函数的图象经过点P(3,-
2、1),则这个函数的图象位于()A.第一、三象限B.第二、三象限C.第二、四象限D.第三、四象限4、若反比例函数的图象位于第一、三象限,则k的值是※知识点:反比例中,当k>0时,图象位于象限,当k<0时,图象位于象限。5、反比例函数的图象在第象限,在每个象限内,y随着x的增大而教学过程6、在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是( )A.k>1B.k>0C.k≥1D.k<1※知识点:反比例中,当k>0时,每个象限内,函数y的值随x的增大而,当k<0时,每个象限内,函数y的值随x的增大而7、如图,过反比例函数的图象上一点A作AB⊥x轴于点
3、B,连接AO,若,则k的值为( )A.2B.3C.4D.5※知识点:k的几何意义:如图,点P在反比例函数上,PA⊥x轴,PB⊥y轴,矩形OAPB的面积=,△OBP的面积=△OAP的面积=8、已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是※知识点:反比例函数既是图形,也是图形。二、例题讲解例1、(2016•菏泽)如图,在平面直角坐标系xOy中,双曲线与直线y=-2x+2交于点A(-1,a).(1)求a,m的值;(2)求该双曲线与直线y=-2x+2另一个交点B的坐标.例2.如图所示,已知一次函数的图象与反比例函数的图象相交于点A(
4、1,3),B(m,1),求:(1)m的值与一次函数表达式;(2)△ABO的面积.三、中考链接1、(2012•滨州)下列函数:①;②;③;④;⑤;⑥中,y是x的反比例函数的有(填序号)2、(2016•哈尔滨)点(2,-4)在反比例函数的图象上,则下列各点在此函数图象上的是( )A.(2,4)B.(-1,-8)C.(-2,-4)D.(4,-2)3、(2012•高州市一模)函数的图象是双曲线,则m=4、矩形的面积为,此时矩形的长y(cm)与宽x(cm)之间的函数关系用图象大致可以表示为()A.B.C.D.5、(2016•绥化)当k>0时,反比例函数和一次函数y=kx+2的
5、图象大致是( )A.B.C.D.6、(2010•江西)反比例函数图象的对称轴的条数是7、(2013•三明)如图,已知直线y=mx与双曲线的一个交点坐标为(3,4),则它们的另一个交点坐标是( )A.(-3,4)B.(-4,-3)C.(-3,-4)D.(4,3)8、(2015•钦州)对于函数,下列说法错误的是( )A.图象位于第一、第三象限C.当x>0时,y随x的增大而增大B.图象既是轴对称图形又是中心对称图形D.当x<0时,y随x的增大而减小9、(2016•南充)如图,直线与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如
6、果△ACP的面积为3,求点P的坐标.四、课时小结板书设计反比例函数总复习1.反比例函的定义:4.K的几何意义2.反比例函数的三种等价形式:5.反比例函数的应用3.反比例函数的图象6.例题讲解(1)图象的位置7.随堂练习(2)图象的增减性质(3)对称性
此文档下载收益归作者所有