欢迎来到天天文库
浏览记录
ID:38562532
大小:71.83 KB
页数:4页
时间:2019-06-14
《正方形中线段关系的探究》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、《正方形中线段关系的探究》教学设计教学目标:1.掌握正方形形的概念、性质和判定.2.运用正方形有关的性质定理及判定定理,去解决有关线段平行、垂直或相等问题和有关角相等及计算问题.3.体会在证明过程中,所运用的归纳、转化、数形结合、分类讨论等数学思想方法.重点、难点:解决此类题的关键是作出辅助线,证明三角形全等.【引入】:如图ABCD是一个正方形花园,E、F是它的两个门,且DE=CF,要修建两条路BE和AF,这两条路等长吗?它们有什么位置关系?请证明你的猜想.(人教版八年级下册第68页第8题)【分析】由DE=CF可得AE=DF⇒△DAF≌△ABE,然后根据全等三角形的对应角相等可得出BE
2、与AF的关系.【预习案】1.如图,正方形ABCD的边长为3cm,E为CD边上一点,∠DAE=30º,M为AE的中点,过点M作直线分别与AD、BC相交于点P、Q,若PQ=AE,则AP等于___________cm.【分析】根据题意画出图形,过P作PN⊥BC,交BC于点N,由ABCD为正方形,得到AD=DC=PN,在直角三角形ADE中,利用锐角三角函数定义求出DE的长,进而利用勾股定理求出AE的长,根据M为AE中点求出AM的长,利用HL得到三角形ADE与三角形PQN全等,利用全等三角形对应边,对应角相等得到DE=NQ,∠DAE=∠NPQ=30°,再由PN与DC平行,得到∠PFA=∠DEA=
3、60°,进而得到PM垂直于AE,在直角三角形APM中,根据AM的长,利用锐角三角函数定义求出AP的长,再利用对称性确定出AP′的长即可.2.如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是( )①AE=BF;②AE⊥BF;③sin∠BQP=;④S四边形ECFG=2S△BGE.A.4B.3C.2D.1【分析】首先证明△ABE≌△BCF,再利用角的关系求得∠BGE=90°,即可得到①AE=BF;②AE⊥BF;△BCF沿BF对折,得到△BPF,利用角的关系求出QF=QB,解出
4、BP,QB,根据正弦的定义即可求解;根据AA可证△BGE与△BCF相似,进一步得到相似比,再根据相似三角形的性质即可求解.【探究案】如图,四边形ABCD为正方形.在边AD上取一点E,连接BE,使∠AEB=60°.(1)利用尺规作图补全图形;(要求:保留作图痕迹,并简述作图步骤)(2)取BE中点M,过点M的直线交边AB,CD于点P,Q.①当PQ⊥BE时,求证:BP=2AP;②当PQ=BE时,延长BE,CD交于N点,猜想NQ与MQ的数量关系,并说明理由.【分析】(1)如图,分别以点B、C为圆心,BC长为半径作弧交正方形内部于点T,连接BT并延长交边AD于点E;(2)连接PE,先证明PQ垂直
5、平分BE.得到PB=PE,再证明∠APE=60°,得到∠AEP=30°,利用在直角三角形中,30°所对的直角边等于斜边的一半,即可解答;(3)NQ=2MQ或NQ=MQ,分两种情况讨论作出辅助线,证明△ABE≌△FQP,即可解答.【训练案】1.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD于N点,连接MN,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有( )A.2个B.3个C.
6、4个D.5个【分析】由正方形的性质及条件可判断出①△ABE≌△BCF,即可判断出②AE=BF,∠BAE=∠CBF,再根据∠BAE+∠BEA=90°,可得∠CBF+∠BEA=90°,可得出∠APB=90°,即可判断③,由△BPE∽△BCF,利用相似三角形的性质,结合CF=BE可判断④;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△BCG中,根据勾股定理,求出CG的长度,再求出PG的长度,即可求出线段CP的最小值,可判断⑤.2.如图,若正方形ABCD的边长为4,E为BC边上一点,BE=3
7、,M为线段AE上一点,射线BM交正方形的一边于点F,且BF=AE,则BM的长为___________.【分析】分两种情况进行分析,①当BF如图位置时,②当BF为BG位置时;根据相似三角形的性质即可求得BM的长.3.如图,在边长为2的正方形ABCD中,P为AB的中点,Q为边CD上一动点,设DQ=t(0≤t≤2),线段PQ的垂直平分线分别交边AD、BC于点M、N,过Q作QE⊥AB于点E,过M作MF⊥BC于点F.(1)当t≠1时,求证:△PEQ≌△N
此文档下载收益归作者所有