欢迎来到天天文库
浏览记录
ID:38559920
大小:184.00 KB
页数:5页
时间:2019-06-14
《消元—二元一次方程组的解法(代入消元法)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、消元法—二元一次方程组的解法(代入消元法)一、教学目标知识与技能会用代入消元法解二元一次方程组;能初步体会解二元一次方程组的基本思想——“消元”。过程与方法培养学生基本的运算技巧和能力;培养学生的观察、比较、分析、综合等能力,会应用学过的知识去解决新问题。情感态度与价值观鼓励学生积极主动的参与整个“教”与“学”的过程,通过研究解决问题的方法,培养学生合作交流意识与探究精神。二、教学重点难点重点是用代入法解二元一次方程组。难点是代入法的灵活运用,并能正确地选择恰当方法(代入法)解二元一次方程组。疑点是如何“消元”
2、,把“二元”转化为“一元”。解决办法是一方面复习用一个未知量表示另一个未知量的方法,另一方面学会选择用一个系数较简单的方程进行变形。三、教学方法引导发现法,谈话讨论法,练习法,尝试指导法课时安排:1课时。教具学具准备:电脑或投影仪。四、教学过程教师活动学生活动设计意图(一)创设情境,激趣导入在8.1中我们已经看到,直接设两个未知数(设胜x场,负y场),可以列方程组表示本章引言中问题的数量关系。如果只设一个未知数(设胜x场),这个问题也可以用一元一次方程________________________[1]来解。
3、分析:[1]2x+(22-x)=40。观察上面的二元一次方程组和一元一次方程有什么关系?[2][2]通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。这正是下面要讨论的内容。看图,分析已知条件思考师生互动列式解答思考,同桌交流总结从生活中的实际问题引入,激发了学生的学习兴趣,对新课起着过渡作用。培养学生的合作交流能力,分析能力及表达。设计意图(二)概念教学可以发现,二元一次方程组中第1个方程x+y=22说明y=22-x,将第2个方程2x+y=40的y换为22-
4、x,这个方程就化为一元一次方程2x+(22-x)=40。解这个方程,得x=18。把x=18代入y=22-x,得y=4。从而得到这个方程组的解。(教师在课件中一步步导出过程)二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。这种将未知数的个数由多化少、逐一解决的想法,叫做消元思想。[3][3]通过对上面具体方程组的讨论,归纳出“将未知数的个数由多化少、逐一解决”的消元思想,这是从具体到抽象,从特殊到一般的认识过程
5、。所谓“消元”就是减少未知数的个数,使多元方程最终转化为一元方程再解它。归纳上面的解法,是由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解。这种方法叫做代入消元法,简称代入法[4]倾听,理解,师生互动,学生边听边练倾听,理解全班齐读记忆同桌交流学习学生归纳展示交流成果为概念的引出做好铺垫理解消元思想是本节课的重难点,要分析透彻。由浅入深,精辟总结消元思想。对概念进行深入的了解[4]这是对代入法的基本步骤的概括,代入法通过“把一个方程(
6、必要时先做适当变形)代入另一个方程”进行等量替换,用含一个未知数的式子表示另一个未知数,从而实现消元。其他同学倾听,理解教师总结学生倾听和理解概念及时强调让学生对新知识掌握得更加完整。(三)例题教学例1用代入法解方程组分析:方程①中x的系数是1,用含y的式子表示x,比较简便。解:由①,得x=y+3。③把③代入②,得([5]把③代入①可以吗?试试看。)3(y十3)一8y=14。解这个方程,得y=一1。把y=-l代入③,得([6]把y=-1代入①或②可以吗?)x=2所以这个方程组的解是[5]由于方程③是由方程①得到
7、的,所以它只能代入方程②,而不能代入①。为使学生认识到这一点,可以让其试试把③代入①会出现什么结果。[6]得到一个未知数的值后,把它代入方程①②③都能得到另一个未知数的值。其中代入方程③最简捷。为使学生认识到这一点,可以让其试试各种代入法。例2根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250g)两种产品的销售数量比(按瓶计算)为2:5。[7]某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶?[7]两种产品的销售数量比为2:5,即销售的大瓶数目与小瓶数目的比为2:5。这里
8、的数目以瓶为单位。分析:问题中包含两个条件:大瓶数:小瓶数=2:5,思考独立完成老师与个别学生互动适时指导同桌交流选同学分析和回答解题过程同学回答正确适当表扬后提问[5][6]学生尝试并给出回答学生自由读题,分析条件,列出方程组并解答培养学生思考及解决问题的能力检验学生对知识的掌握程度。通过总结,再次加深学生对知识的掌握程度,给学生充分发挥的空间。在学生形成解题思维之后,放手让学生完成
此文档下载收益归作者所有