欢迎来到天天文库
浏览记录
ID:38554263
大小:16.57 KB
页数:6页
时间:2019-06-14
《一元一次不等式(第1课时)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、9.2一元一次不等式(第1课时)教学设计垫江县长龙中学校李天红一、内容和内容解析(一)内容一元一次不等式的概念及解法(二)内容解析在初中阶段,一元一次不等式位于二元一次方程组之后,它是进一步探究现实世界数量关系的重要内容,不等式的研究从最简单的一元一次不等式开始,一元一次不等式及其相关概念是本章的基础知识,解任何一个代数不等式(组)最终都要化归为解一元一次不等式,因此解一元一次不等式是一项基本技能.另外,不等式解集在数轴上表示从形的角度描述了不等式的解集,并为解不等式组做了准备,本节内容是进一步学习其它不等式(组)的基础
2、.解一元一次不等式与解一元一次方程在本质上是相同的,即依据不等式的性质,逐步将不等式化为x>a或x<a的形式,从而确定未知数的取值范围,这一化繁为简的过程,充分体现了化归的思想.基于以上分析,本节课的教学重点:一元一次不等式的解法.二、目标和目标的解析(一)目标(1)了解一元一次不等式的概念,掌握一元一次不等式的解法;(2)在依据不等式的性质探究一元一次不等式的解法的过程中,加深对化归思想的体会.(二)目标解析达到目标(1)的标志是:学生能说出一元一次不等式的特征,会解一元一次不等式,并能在数轴上表示出解集.达到目标(2
3、)的标志是:学生能通过类比解一元一次方程的过程,获得解一元一次不等式的思路,即依据不等式的性质,将一元一次不等式逐步化简为x>a或x<a的形式,学生能借助具体例子,将化归思想具体化,获得解一元一次不等式的步骤.三、教学问题诊断分析通过前面的学习,学生已掌握一元一次方程概念及解法,对解一元一次方程的化归思想有所体会但还不够深刻.因此,运用化归思想把形式复杂的不等式转化为x>a或x<a的形式,对学生有一定的难度.所以,教师需引导学生类比解一元一次方程的步骤,分析形式复杂的一元一次不等式的结构特征,并与化简目标进行比较,逐步将
4、不等式变形为最简形式.本节课的教学难点为:解一元一次不等式步骤的确定.四、教学过程设计(一)引导观察形成概念问题:观察下面的不等式,它们有哪些共同特征?x-7>26,3x<2x+1,,-4x>3。学生回答,教师可以引导学生从不等式中未知数的个数和次数两个方面去观察不等式的特点,并与一元一次方程的定义类比.师生共同归纳获得:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式.设计意图:引导学生通过观察给出不等式,归纳出它们的共同特征,进而得到一元一次不等式的定义,培养学生观察、归纳的能力.(二)通过类比研究解法练
5、习:利用不等式的性质解不等式x-7>26学生尝试独立完成练习教师结合解题过程,指出:由x-7>26可得到x>26+7,也就是说解不等式和解方程一样,也可以“移项”,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向.设计意图:通过解简单的一元一次不等式,让学生回忆利用解方程的过程,教师通过简化练习中的解题步骤,让学生明确不等式和解方程一样可以“移项”,为下面类比解方程形成解不等式的步骤作好准备.设问1:解一元一次方程的依据和一般步骤是什么?学生回忆解一元一次方程的依据是等式的性质.一般步骤是:去分母,去括号,移项
6、,合并同类项,系数化为1.设问2:解一元一次不等式能否采用类似的步骤?学生讨论解一元一次不等式是否可以采用类似的步骤,教师再指出:利用不等式的性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的解集.设计意图:通过回忆解一元一次方程的依据和一般步骤,让学生思考解一元一次不等式能否采用同样步骤,从而获得解一元一次不等式的思路.(三)例题讲解规范步骤例:解下列不等式,并在数轴上表示解集(1)2(1+x)<3设问(1):解一元一次不等式的目标是什么?学生在教师问题的引导下,思考如何将一元一次不等式变形为最简形式.设
7、问(2):你能类比解一元一次方程的步骤,解第(1)小题吗?由学生独立完成,老师评讲设问(3)对比不等式么不同?设问(4):怎样将不等式≥变形,使变形后的不等式不含分母?≥与2(1+x)<3的两边,它们在形式上有什小组合作交流,老师点拨设问(5):你能说出解一元一次不等式的基本步骤吗?学生回答,教师总结:去分母,去括号,移项,合并同类项,系数化为1.设问(6):对比第(1)小题和第(2)小题的解题过程,系数化为1时应注意些什么?学生回答,教师再强调:要看未知数系数的符号,若未知数的系数是正数,则不等号的方向不变,若是负数,
8、则不等号的方向要改变.设计意图:通过解具体的一元一次不等式,引导学生明确解不等式以化归思想为指导,比较原不等式与目标形式(x>a或x<a)的差异,思考如何依据不等式的性质将原不等式通过变形转化为最简形式,以获得解一元一次不等式的步骤.(四)辨别异同深化认识设问1:解一元一次不等式和解一元一次方程有哪些相同和不同处?学
此文档下载收益归作者所有