新北师大版数学八上教学设计1.3. 勾股定理的应用

新北师大版数学八上教学设计1.3. 勾股定理的应用

ID:38479548

大小:772.00 KB

页数:7页

时间:2019-06-13

新北师大版数学八上教学设计1.3. 勾股定理的应用_第1页
新北师大版数学八上教学设计1.3. 勾股定理的应用_第2页
新北师大版数学八上教学设计1.3. 勾股定理的应用_第3页
新北师大版数学八上教学设计1.3. 勾股定理的应用_第4页
新北师大版数学八上教学设计1.3. 勾股定理的应用_第5页
资源描述:

《新北师大版数学八上教学设计1.3. 勾股定理的应用》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第一章勾股定理1.3.勾股定理的应用——圆柱体中的“最短距离”问题文山市平坝中学张跃志一、学生知识状况分析本节将利用勾股定理及其逆定理解决一些具体的实际问题——圆柱体中的“最短距离”问题,其中需要学生了解空间图形、对一些空间图形进行展开、折叠等活动.学生在学习七年级上第一章时对生活中的立体图形已经有了一定的认识,并从事过相应的实践活动,因而学生已经具备解决本课问题所需的知识基础和活动经验基础.二、教学任务分析本节是义务教育课程标准北师大版实验教科书八年级(上)第一章《勾股定理》第3节.具体内容是运用勾股定理及其逆定理解决简单的实际问题——圆柱体中的“最短距离”问题.当然,在这些具体问题的

2、解决过程中,需要经历几何图形的抽象过程,需要借助观察、操作等实践活动,这些都有助于发展学生的分析问题、解决问题能力和应用意识;一些探究活动具体一定的难度,需要学生相互间的合作交流,有助于发展学生合作交流的能力.本节课的教学目标是:1.通过观察图形,探索图形间的关系,发展学生的空间观念.2.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.3.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性.利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题是本节课的重点也是难点.四、教法学法1.教学方法引导—探究—归纳本节课的教学对象是初二

3、学生,他们的参与意识教强,思维活跃,为了实现本节课的教学目标,我力求以下三个方面对学生进行引导:(1)从创设问题情景入手,通过知识再现,孕育教学过程;(2)从学生活动出发,顺势教学过程;(3)利用探索研究手段,通过思维深入,领悟教学过程.2.课前准备教具:教材、电脑、多媒体课件.学具:用矩形纸片做成的圆柱、剪刀、教材、笔记本、课堂练习本、文具.五、教学过程分析本节课设计了五个环节.第一环节:情境引入;第二环节:合作探究;第三环节:小试牛刀;第四环节:交流小结;第五环节:布置作业.第一环节:情境引入内容:情景1:复习(多媒体展示):提出问题:1.从二教楼到综合楼怎样走最近?2.求圆柱体的侧

4、面积?展示学习目标情景2:新课探究如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?意图:通过情景1复习公理:两点之间线段最短;情景2的创设引入新课,激发学生探究热情.效果:从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,为下一环节奠定了良好基础.第二环节:合作探究内容:学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”

5、就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法.意图:通过学生的合作探究,找到解决“蚂蚁怎么走最近”的方法,将曲面最短距离问题转化为平面最短距离问题并利用勾股定理求解.在活动中体验数学建摸,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念.效果:学生汇总了四种方案:A’A’A’(1) (2)   (3)   (4)学生很容易算出:情形(1)中A→B的路线长为:,情形(2)中A→B的路线长为:所以情形(1)的路线比情形(2)要短.学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,情形(3)A→B是折

6、线,而情形(4)是线段,故根据两点之间线段最短可判断(4)较短,最后通过计算比较(1)和(4)即可.如图:(1)中A→B的路线长为:.(2)中A→B的路线长为:>AB.(3)中A→B的路线长为:AO+OB>AB.(4)中A→B的路线长为:AB.得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB?在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12cm,底面半径为3cm,π取3,则.注意事项:本环节的探究把圆柱侧面寻最短路径拓展到了圆柱表面,目的仅仅是让学生感知最短路径的不同存在可能.但这一拓展使学生无法去论

7、证最短路径究竟是哪条.因此教学时因该在学生在圆柱表面感知后,把探究集中到对圆柱侧面最短路径的探究上.方法提炼:解决实际问题的关键是根据实际问题建立相应的数学模型,解决这一类几何型问题的具体步骤大致可以归纳如下:(1)转化:实际问题转化成数学问题(2)展开:立体图形展开成平面图形(3)构建:构建直角三角形(4)应用:应用勾股定理解决实际问题第三环节:小试牛刀内容:有一个圆柱形油罐,要以A点环绕油罐建梯子,正好A点的正上方BB点,问梯子

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。