欢迎来到天天文库
浏览记录
ID:38456219
大小:55.00 KB
页数:4页
时间:2019-06-13
《3 确定二次函数的表达式》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第二章二次函数《确定二次函数的表达式(第2课时)》教学设计说明岳壁二中霍宝珍一、教学目标知识与技能:经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法,培养数学应用意识.过程与方法:会用待定系数法求二次函数的表达式.情感态度与价值观:逐步培养学生观察、比较、分析、概括等逻辑思维能力引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.教学重点求二次函数的解析式教学难点根据问题灵活选用二次函数表达式的不同形式,求出函数解析式,解决实际问题二、教法学法“问题情境—建立模型—应用与拓展”,让学生积极探索,并和同伴进行交流,勇于发表自己的观点,从交流中
2、发现新知识.三、教学过程本节课设计了五个环节:第一环节:情境引入;第二环节:问题解决;第三环节:反馈练习;第四环节:课时小结;第五环节:作业布置.第一环节:情境引入1、一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,所以,我们把________________________叫做二次函数的一般式.2、二次函数y=ax2+bx+c,用配方法可化成:y=a(x-h)2+k,顶点是(h,k).配方:y=ax2+bx+c=__________________=___________________=__________________=a(x+)
3、2+.对称轴是x=,顶点坐标是,其中h=,k=,所以,我们把_____________叫做二次函数的顶点式.3、已知A(2,1)、B(0,-4),求经过A、B两点的一次函数表达式.解:设过A、B两点的一次函数表达式为把、代入 解得k=,b=所以表达式为.我们把这种方法叫做待定系数法.提出问题:确定二次函数y=ax2+bx+c需要哪些条件?第二环节:问题解决例1已知一个二次函数的图象经过(-1,10),(1,4),(2,7)三点,求这个二次函数的表达式,并写出它的对称轴和顶点坐标.分析:(1)本题可以设函数的表达式为?(2)题目中有几个待定系数?(3)需要代入几个点的坐标?
4、(4)用一般式求二次函数的表达式的一般步骤是什么?解:设所求的二次函数的表达式为由已知,将三点(-1,10),(1,4),(2,7)分别代入表达式,得解这个方程组,得∴所求函数表达式为∴∴二次函数对称轴为直线,顶点坐标为探究活动:一个二次函数的图象经过点A(0,1),B(1,2),C(2,1),你能确定这个二次函数的表达式吗?你有几种方法?与同伴进行交流.方法一解:设所求的二次函数的表达式为由已知,将三点(0,1),(1,2),(2,1),分别代入表达式,得解这个方程组,得∴所求函数表达式为方法二解:A(0,1)与C(2,1)的纵坐标相同∴A,C两点关于二次函数的对称轴对
5、称根据对称轴性质可得对称轴的横坐标∴所以B(1,2)为二次函数的顶点∴可设,将A(0,1)代入解得∴探究一:观察三个点坐标,找出特点.探究二:如何说明B点是顶点探究三:如何用我们学过的方法求这个二次函数的解析式探究四:总结一下如何根据问题灵活选用二次函数表达式的不同形式,求出函数解析式.第三环节:反馈练习1.已知二次函数的图像过点A(0,-1)B(1,-1)C(2,3)求此二次函数解析式;2.已知二次函数的图像过点A(1,-1)B(-1,7)C(2,1)求此二次函数解析式;3.已知二次函数图像的顶点坐标为(-1,-8),图像与x轴的一个公共点A的横坐标为-3,求这个函数解
6、析式第四环节:课时小结1.掌握求二次函数的解析式的方法——待定系数法;2.能根据不同的条件,恰当地选用二次函数解析式的形式,尽量使解题简捷;3.解题时,应根据题目特点,灵活选用,必要时数形结合以便于理解.说明:让学生畅所欲言,相互进行补充,尽量用自己的语言进行归纳总结.第五环节:作业布置作业:习题2.71.2.3六、教学设计反思(1)设计理念二次函数是研究现实世界变化规律的一个重要模型,是初中阶段数学学习的一个重要内容.在本节教学设计中,利用已经学习过的知识,进一步探究待定系数法解决二次函数表达式的确定,同时通过对给出条件的分析,选择合适的二次函数表达式和方法来解决问题.
7、(2)突出重点、突破难点的策略本节课是在学生已经掌握了二次函数的有关性质和表达式的基础上,对有关知识进行应用和拓展.在教学过程中,教师应通过问题情境的创设,激发学生的学习兴趣,并注意通过有层次的问题串的精心设计,引导学生进行探究活动.在师生互动、生生互动的探究活动中,提高学生解决实际问题的能力.
此文档下载收益归作者所有