《整式的加法和减法》教案

《整式的加法和减法》教案

ID:38000230

大小:101.00 KB

页数:4页

时间:2019-05-23

《整式的加法和减法》教案_第1页
《整式的加法和减法》教案_第2页
《整式的加法和减法》教案_第3页
《整式的加法和减法》教案_第4页
资源描述:

《《整式的加法和减法》教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、《整式的加法和减法》教案教学目标(1)了解同类项、合并同类项的概念,掌握合并同类项法则,能正确合并同类项.(2)能先合并同类项化简后求值.过程与方法经历类比有理数的运算律,探究合并同类项法则,培养学生观察、探索、分类、归纳等能力.重、难点与关键1.重点:掌握合并同类项法则,熟练地合并同类项.2.难点:多字母同类项的合并.3.关键:正确理解同类项概念和合并同类项法则.教具准备投影仪.教学过程引入:有理数可以进行加减计算,那么整式能否可以加减运算呢?怎样化简呢?在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段所需的时间就是21t

2、小时,则这段铁路的全长是100t+120×21t,即100t+252t1.类比数的运算,我们应如何化简式子100t+252t呢?(1)运用有理数的运算律计算:100×2+252×2=______;100×(-2)+252×(-2)=_______.(2)根据(1)中的方法完成下面的运算,并说明其中的道理.思路点拨:根据逆用乘法对加法的分配律可得:100t+252t=________.思路点拨:逆用乘法对加法的分配律可得:100×2+252×2=(100+252)×2=352×2100×(-2)+252×(-2)=(100+252)×(-2)=352×

3、(-2)我们知道字母可以表示数,如果用t表示上述算术中的数2(或-2)就有,100t+252t=(100+252)×t=352t.事实上,100t+252t与100×2+252×2和100×(-2)+252×(-2)有相同的结构,都是两个数分别与同一个数乘积的和,这里t表示同一个因数,因此根据分配律也应该有:100t+252t=(100+252)t=352t2.填空:(1)100t-252t=()t;(2)3x2+2x2=()x2;(3)3ab2-4ab2=()ab2.对于上面的(1)、(2)、(3),利用分配律可得:100t-252t=(100-2

4、52)t=-152t3x2+2x2=(3+2)x2=5x23ab2-4ab2=(3-4)ab2=-ab2这就是说,上面的三个多项式都可以合并为一个单项式.具备什么特点的多项式可以合并呢?观察(1)中多项式的项100t和-252t,它们都含有相同字母t,并且t的指数都是1;(2)中的多项式的项3x2+2x2都含有相同字母x,并且字母x的指数都是2;(3)中的多项式的项3ab2和-4ab2都含有字母a,b,并且字母a的指数都是1,b的指数都是2.像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做同类项,几个常数项也是同类项.例:合并下列各式的同类

5、项.(1)xy-02xy(2)-3xy+2xy+3xy-2xy(3)4a+3b+2ab-4a-4b(学生讨论得出结果).例:(1)求多项式的值,其中x=05.(2)求多项式的值,其中a=-,b=2,c=-3.分析:在求多项式的值时,可以先将多项式中的同类项合并,然后再求值,这样做往往可以简化计算.3.思考:下列各组是不是同类项:(1)05x2y和02xy2(2)4abc和4ab(3)-5m2n3和2n3m2(4)7xnyn+1和-3xnyn+1思路点拨:根据同类项定义进行判断,同类项应所含字母相同,并且相同字母的指数也相同,二者缺一不可,与其系数无关

6、,与其字母顺序无关.(1)题虽然所含字母相同,但相同字母的指数不同,(2)题所含字母不同;(3)、(4)符合同类项定义,所以(3)、(4)是同类项,(1)、(2)不是同类项.因为多项式中的字母表示的是数,所以我们也可以运用交换律、结合律分配律把多项式中的同类项进行合并.例如,4x2+2x+7+3x-8x2-2(找出多项式中的同类项)=4x2-8x2+2x+3x+7-2(交换律)=(4x2-8x2)+(2x+3x)+(7-2)(结合律)=(4-8)x2+(2+3)x+(7-2)(分配律)=-4x2+5x+5把多项式中的同类项合并成一项,叫做合并同类项.

7、例:(1)8a+2b+(5a-b)解(1)8a+2b+(5a-b)=8a+2b+5a-b=13a+b(2)(5a-3b)-3(a2-2b)解:(2)(5a-3b)-3(a2-2b)=5a-3b-(3a2-6b)=5a-3b-3a2+6b=-3a2+5a+3b例:做大小两个长方体纸盒,尺寸如下(单位:cm):长宽高小纸盒abc大纸盒15a2b2c(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?解:小纸盒的表面积是2ab+2bc+2ca平方厘米,大纸盒的表面积是6ab+8bc+6ca平方厘米.(1)做这两个纸盒共用料:(

8、2ab+2bc+2ca)+(6ab+8bc+6ca)=2ab+2bc+2ca+6ab+8bc+6ca=8ab

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。