欢迎来到天天文库
浏览记录
ID:37735951
大小:51.50 KB
页数:2页
时间:2019-05-29
《勾股定理典型例题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、类型二:勾股定理的构造应用2、如图,已知:在中,,,.求:BC的长.举一反三【变式1】如图,已知:,,于P.求证:.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。求:四边形ABCD的面积。类型三:勾股定理的实际应用(一)用勾股定理求两点之间的距离问题3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。(1)求A、C两点之间的距离。(2)确定目的地C在营地A的什么方向。类型二:勾股定理的应用2、如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所
2、中学,AP=160m。假设拖拉机行驶时,周围100m以内会受到噪音的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由,如果受影响,已知拖拉机的速度为18km/h,那么学校受影响的时间为多少秒?(2)要求出学校受影响的时间,实质是要求拖拉机对学校A的影响所行驶的路程。因此必须找到拖拉机行至哪一点开始影响学校,行至哪一点后结束影响学校。类型三:数学思想方法(一)转化的思想方法我们在求三角形的边或角,或进行推理论证时,常常作垂线,构造直角三角形,将问题转化为直角三角形问题来解决.3、如图所示,△ABC是等腰直角三角形,AB=AC,D是斜边BC的中点,
3、E、F分别是AB、AC边上的点,且DE⊥DF,若BE=12,CF=5.求线段EF的长。总结升华:此题考查了等腰直角三角形的性质及勾股定理等知识。通过此题,我们可以了解:当已知的线段和所求的线段不在同一三角形中时,应通过适当的转化把它们放在同一直角三角形中求解。
此文档下载收益归作者所有