资源描述:
《5.8_探索直角三角形全等的条件(含答案)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、探索直角三角形全等的条件一、填空题:(每题5分,共20分)1.有________和一条________对应相等的两个直角三角形全等,简写成“斜边直角边”或用字母表示为“___________”.2.如图,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是____cm.3.已知△ABC和△A′B′C′,∠C=∠C′=90°,AC=A′C′,要判定△ABC≌△A′B′C′,必须添加条件为①________或②________或③________或④_________.4.如图,B、E、F
2、、C在同一直线上,AF⊥BC于F,DE⊥BC于E,AB=DC,BE=CF,若要说明AB∥CD,理由如下:∵AF⊥BC于F,DE⊥BC于E(已知)∴△ABF,△DCE是直角三角形∵BE=CF(已知)∴BE+_____=CF+_______(等式性质)即_______=___________(已证)∴Rt△ABF≌Rt△DCE()二、选择题:(每题5分,共25分)5.两个直角三角形全等的条件是()A.一锐角对应相等;B.两锐角对应相等;C.一条边对应相等;D.两条边对应相等6.要判定两个直角三角形全
3、等,需要满足下列条件中的()①有两条直角边对应相等;②有两个锐角对应相等;③有斜边和一条直角边对应相等;④有一条直角边和一个锐角相等;⑤有斜边和一个锐角对应相等;⑥有两条边相等.A.6个B.5个C.4个D.3个7.如图,AB∥EF∥DC,∠ABC=90°,AB=DC,那么图中有全等三角形()A.5对;B.4对;C.3对;D.2对8.已知在△ABC和△DEF中,∠A=∠D=90°,则下列条件中不能判定△ABC和△DEF全等的是()A.AB=DE,AC=DFB.AC=EF,BC=DFC.AB=DE,BC
4、=EFD.∠C=∠F,BC=EF9.如果两个直角三角形的两条直角边对应相等,那么两个直角三角形全等的依据是()A.AASB.SASC.HLD.SSS三、解答题:(共55分)10.如图,△ABC中,∠C=90°,AB=2AC,M是AB的中点,点N在BC上,MN⊥AB.求证:AN平分∠BAC.(7分)11.已知:如图AC、BD相交于点O,AC=BD,∠C=∠D=90°,求证:OC=OD.(8分)12.已知:如图,AB=AE,BC=ED,∠B=∠E,AF⊥CD,F为垂足,求证:CF=DF.(8分)13.在
5、△ABC中,BD、CE是高,BD与CE交于点O,且BE=CD,求证:AE=AD.(8分)14.已知如图,AB=AC,∠BAC=90°,AE是过A点的一条直线,且B、C在DE的异侧,BD⊥AE于D,CE⊥AE于E,求证:BD=DE+CE.(8分)15.已知如图,在△ABC中,∠BAC=2∠B,AB=2AC,求证:△ABC是直角三角形?(8分)16.已知如图,在△ABC中,以AB、AC为直角边,分别向外作等腰直角三角形ABE、ACF,连结EF,过点A作AD⊥BC,垂足为D,反向延长DA交EF于点M.(1)用圆规比较EM
6、与FM的大小.(2)你能说明由(1)中所得结论的道理吗?(8分)17如图,在边长为6的正方形中,点在上从向运动,连接交于点连接⑴试证明:无论点运动到上何处时,都有ABCDPQ⑵当的面积与正方形面积之比为1:6时,求的长度,并直接写出此时点在上的位置.18、如图1,若△ABC和△ADE为等边三角形,M,N分别为EB,CD的中点,易证:CD=BE,△AMN是等边三角形:(1)当把△ADE绕点A旋转到图2的位置时,CD=BE吗?若相等请证明,若不等于请说明理由;(2)当把△ADE绕点A旋转到图3的位置时,△AMN还是等边三角形
7、吗?若是请证明,若不是,请说明理由(可用第一问结论).