资源描述:
《2.5二次函数与一元二次方程》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.5二次函数与一元二次方程北师大版九年级下册第二章《二次函数》1一元二次方程-5t2+40t=0的根为:。2一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=。当△﹥0方程根的情况是:;当△=0时,方程;当△﹤0时,方程。b2-4ac有两个不等实数根有两个相等实数根没有实数根t1=0,t2=83二次函数y=ax2+bx+c(a、b、c是常数,且a≠0)图像是一条,它与x轴的交点有几种可能的情况?抛物线三种可能:①两个交点②一个交点③没有交点。复习提问(1).h和t的关系式是什么?(2)
2、.小球经过多少秒后落地?你有几种求解方法?与同伴进行交流.我们已经知道,竖直上抛物体的高度h(m)与运动时间t(s)的关系可用公式h=-5t2+v0t+h0表示,其中h0(m)是抛出时的高度,v0(m/s)是抛出时的速度.一个小球从地面以40m/s的速度竖直向上抛出起,小球的高度h(m)与运动时间t(s)的关系如图所示,那么活动探究10t2468h20406080100活动探究2驶向胜利的彼岸3抛物线y=x2-4x+4与轴有个交点,坐标是。1若方程ax2+bx+c=0的根为x1=-2和x2=3,
3、则二次函数y=ax2+bx+c的图象与x轴交点坐标是。2抛物线y=0.5x2-x+3与x轴的交点情况是()A两个交点B一个交点C没有交点D画出图象后才能说明(-2,0)和(3,0)c1(2,0)课堂练习4不画图象,求抛物线y=x2-3x-4与x轴的交点坐标。解:∵解方程x2-3x-4=0得:x1=-1,x2=4∴抛物线y=x2-3x-4与x轴的交点坐标是:(-1,0)和(4,0)101xyMN232y=x2-4x+45一元二次方程x2-4x+4=1的根与二次函数y=x2-4x+4的图象有什么关系
4、?试把方程的根在图象上表示出来。课堂练习二次函数y=ax2+bx+c何时为一元二次方程?它们的关系如何?在本节一开始的小球上抛问题中,何时小球离地面的高度是60m?你是如何知道的?知识升华∴抛出去后第2秒和第6秒时,离地面60米(1).用描点法作二次函数y=x2+2x-10的图象;你能利用二次函数的图象估计一元二次方程x2+2x-10=0的根吗?(2).观察估计二次函数y=x2+2x-10的图象与x轴的交点的横坐标;由图象可知,图象与x轴有两个交点,其横坐标一个在-5与-4之间,另一个在2与3之
5、间,(3).确定方程x2+2x-10=0的解;由此可知,方程x2+2x-10=0的近似根为:x1≈-4.3,x2≈2.3.活动探究分别约为-4.3和2.3用一元二次方程的求根公式验证一下,看是否有相同的结果你认为利用二次函数的图象求一元二次方程的近似根的时候,应该注意什么?(1).用描点法作二次函数y=x2+2x-10的图象;利用二次函数的图象求一元二次方程x2+2x-10=3的近似根.做一做P75(3).观察估计抛物线y=x2+2x-10和直线y=3的交点的横坐标;由图象可知,它们有两个交点,
6、其横坐标一个在-5与-4之间,另一个在2与3之间,分别约为-4.7和2.7(可将单位长再十等分,借助计算器确定其近似值).(4).确定方程x2+2x-10=3的解;由此可知,方程x2+2x-10=3的近似根为:x1≈-4.7,x2≈2.7.(2).作直线y=3;(1).原方程可变形为x2+2x-13=0;利用二次函数的图象求一元二次方程x2+2x-10=3的近似根.(3).观察估计抛物线y=x2+2x-13和x轴的交点的横坐标;由图象可知,它们有两个交点,其横坐标一个在-5与-4之间,另一个在2
7、与3之间,分别约为-4.7和2.7(可将单位长再十等分,借助计算器确定其近似值).(4).确定方程x2+2x-10=3的解;由此可知,方程x2+2x-10=3的近似根为:x1≈-4.7,x2≈2.7.(2).用描点法作二次函数y=x2+2x-13的图象;;解法2利用二次函数y=ax2+bx+c的图象求一元二次方程ax2+bx+c=0的近似根的一般步骤是怎样的?课堂点睛①用描点法作二次函数y=ax2+bx+c的图象;②观察估计二次函数的图象与x轴的交点的横坐标;③确定一元二次方程ax2+bx+c=
8、0的解。在求一元二次方程的解的时候,你愿意采用今天学习的这种方法吗?二次函数y=-2x2+4x+1的图象如图所示,求一元二次方程-2x2+4x+1=0的近似根.驶向胜利的岸(1).观察估计二次函数y=-2x2+4x+1的图象与x轴的交点的横坐标;由图象可知,图象与x轴有两个交点,其横坐标一个在-1与0之间,另一个在2与3之间,分别约为-0.2和2.2(可将单位长再十等分,借助计算器确定其近似值).(3).确定方程-2x2+4x+1=0的解;由此可知,方程-2x2+4x+1=0的近似根为:x1≈-