2018年初中数学中考名师面对面专题指导:2018年初中数学中考名师面对面专题指导5:图形折叠类问题

2018年初中数学中考名师面对面专题指导:2018年初中数学中考名师面对面专题指导5:图形折叠类问题

ID:37326092

大小:323.01 KB

页数:31页

时间:2019-05-22

2018年初中数学中考名师面对面专题指导:2018年初中数学中考名师面对面专题指导5:图形折叠类问题_第1页
2018年初中数学中考名师面对面专题指导:2018年初中数学中考名师面对面专题指导5:图形折叠类问题_第2页
2018年初中数学中考名师面对面专题指导:2018年初中数学中考名师面对面专题指导5:图形折叠类问题_第3页
2018年初中数学中考名师面对面专题指导:2018年初中数学中考名师面对面专题指导5:图形折叠类问题_第4页
2018年初中数学中考名师面对面专题指导:2018年初中数学中考名师面对面专题指导5:图形折叠类问题_第5页
资源描述:

《2018年初中数学中考名师面对面专题指导:2018年初中数学中考名师面对面专题指导5:图形折叠类问题》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、-2018年初中数学中考名师面对面专题指导第五讲图形折叠类问题(一)考点解析:折叠操作就是将图形的一部分沿着一条直线翻折180°,使它与另一部分图形在这条直线的同旁与其重叠或不重叠,其中“折”是过程,“叠”是结果.折叠问题的实质是图形的轴对称变换,折叠更突出了轴对称问题的应用.折叠(或翻折)在三大图形变换中是比较重要的,考查得较多,无论是选择题、填空题,还是解答题都有以折叠为背景的试题.常常把矩形、正方形的纸片放置于直角坐标系中,与函数、直角三角形、相似形等知识结合,贯穿其他几何、代数知识来设题.根据轴对称的性质可以得到:折叠重合部分一定全等,折痕所

2、在直线就是这两个全等形的对称轴;互相重合两点(对称点)之间的连线必被折痕垂直平分;对称两点与对称轴上任意一点连结所得的两条线段相等;对称线段所在的直线与对称轴的夹角相等.--在解题过程中要充分运用以上结论,借助辅助线构造直角三角形,结合相似形、锐角三角函数等知识来解决有关折叠问题.(二)考点训练考点1:折叠后图形判断【典型例题】:(2017浙江湖州)七巧板是我国祖先的一项卓越创造.下列四幅图中有三幅是小明用如图所示的七巧板拼成的,则不是小明拼成的那副图是(  )A.B.C.D.【考点】IM:七巧板.【分析】解答此题要熟悉七巧板的结构:五个等腰直角三角

3、形,有大、小两对全等三角形;一个正方形;一个平行四边形,根据这些图形的性质便可解答.--【解答】解:图C中根据图7、图4和图形不符合,故不是由原图这副七巧板拼成的.故选C【变式训练】:(2017湖北江汉)如图,下列4×4网格图都是由16个相同小正方形组成,每个网格图中有4个小正方形已涂上阴影,请在空白小正方形中,按下列要求涂上阴影.(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形.【考点】R9:利用旋转设计图案;P8

4、:利用轴对称设计图案.--【分析】(1)根据中心对称图形,画出所有可能的图形即可.(2)根据是轴对称图形,不是中心对称图形,画出图形即可.【解答】解:(1)在图1中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个中心对称图形,答案如图所示;(2)在图2中选取2个空白小正方形涂上阴影,使6个阴影小正方形组成一个轴对称图形,但不是中心对称图形,答案如图所示;方法归纳总结:对折叠图形的判断,可以通过空间想象,找出相等的边与角,转化为角度的判断.考点2:折叠后度数判断--【典型例题】:(2017内蒙古赤峰)如图,将边长为4的菱形ABCD纸片折叠,使点

5、A恰好落在对角线的交点O处,若折痕EF=2,则∠A=(  )A.120°B.100°C.60°D.30°【考点】PB:翻折变换(折叠问题);L8:菱形的性质.【分析】连接AC,根据菱形的性质得出AC⊥BD,根据折叠得出EF⊥AC,EF平分AO,得出EF∥BD,得出EF为△ABD的中位线,根据三角形中位线定理求出BD的长,进而可得到BO的长,由勾股定理可求出AO的长,则∠ABO可求出,继而∠BAO的度数也可求出,再由菱形的性质可得∠A=2∠BAO.【解答】解:连接AC,∵四边形ABCD是菱形,--∴AC⊥BD,∵A沿EF折叠与O重合,∴EF⊥AC,EF

6、平分AO,∵AC⊥BD,∴EF∥BD,∴E、F分别为AB、AD的中点,∴EF为△ABD的中位线,∴EF=BD,∴BD=2EF=4,∴BO=2,∴AO==2,∴AO=AB,∴∠ABO=30°,∴∠BAO=60°,∴∠BAD=120°.故选A.--【变式训练】:(2016·四川南充)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG的大小为(  )A.30°B.45°C.60°D.75°【分析】直接利用翻折变换的性质以及直角三角形的性质得出∠2=∠4,再利用平行线

7、的性质得出∠1=∠2=∠3,进而得出答案.【解答】解:如图所示:由题意可得:∠1=∠2,AN=MN,∠MGA=90°,则NG=AM,故AN=NG,则∠2=∠4,--∵EF∥AB,∴∠4=∠3,∴∠1=∠2=∠3=×90°=30°,∴∠DAG=60°.故选:C.【点评】此题主要考查了翻折变换的性质以及平行线的性质,正确得出∠2=∠4是解题关键.方法归纳总结:在折叠问题中,利用对称性可得到相等的角和边.考点3:折叠后线段长度判断【典型例题】:(2017贵州安顺)如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE交DC于点O,

8、若AO=5cm,则AB的长为(  )--A.6cmB.7cmC.8cmD.9cm【考点】PB:翻折变换(折叠

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。