欢迎来到天天文库
浏览记录
ID:36982553
大小:611.00 KB
页数:7页
时间:2019-05-05
《尺规作图2014》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、尺规作图1..在△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD.若CD=AC,∠B=250,则∠ACB的度数为.答案:1050.解析:由①的作图可知CD=BD,则∠DCB=∠B=250,∴∠ADC=500,又∵CD=AC,∴∠A=∠ADC=500,∴∠ACD=800,∴∠ACB==800+250=1050.三、解答题1.(2014•湖南怀化,第21题,10分)两个城镇A、B与两条公路ME,MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发
2、射塔,要求发射塔到两个城镇A、B的距离必须相等,到两条公路ME,MF的距离也必须相等,且在∠FME的内部(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C.(不写已知、求作、作法,只保留作图痕迹)(2)设AB的垂直平分线交ME于点N,且MN=2(+1)km,在M处测得点C位于点M的北偏东60°方向,在N处测得点C位于点N的北偏西45°方向,求点C到公路ME的距离.考点:解直角三角形的应用-方向角问题;作图—应用与设计作图分析:(1)到城镇A、B距离相等的点在线段AB的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的角平分线上,分
3、别作出垂直平分线与角平分线,它们的交点即为所求作的点C.(2)作CD⊥MN于点D,由题意得:∠CMN=30°,∠CND=45°,分别在Rt△CMD中和Rt△CND中,用CD表示出MD和ND的长,从而求得CD的长即可.解答:解:(1)答图如图:(2)作CD⊥MN于点D,由题意得:∠CMN=30°,∠CND=45°,∵在Rt△CMD中,=tan∠CMN,∴MD==;∵在Rt△CND中,=tan∠CNM,∴ND==CD;∵MN=2(+1)km,∴MN=MD+DN=CD+CD=2(+1)km,解得:CD=2km.∴点C到公路ME的距离为2km.点评:本题考
4、查了解直角三角形的应用及尺规作图,正确的作出图形是解答本题的关键,难度不大. 2.(2014•江西抚州,第15题,5分)如图,△与△关于直线对称,请用无刻度的直尺,在下面两个图中分别作出直线.解析:利用轴对称性质:对应线段(或延长线)的交于对称轴上一点.如图,直线l就是所求作的对称轴.3.(2014•浙江杭州,第20题,10分)把一条12个单位长度的线段分成三条线段,其中一条线段成为4个单位长度,另两条线段长都是单位长度的整数倍.(1)不同分段得到的三条线段能组成多少个不全等的三角形?用直尺和圆规作这些三角形(用给定的单位长度,不写作法,保留作图痕
5、迹);(2)求出(1)中所作三角形外接圆的周长.考点:作图—应用与设计作图.分析:(1)利用三角形三边关系进而得出符合题意的图形即可;(2)利用三角形外接圆作法,首先作出任意两边的垂直平分线,即可得出圆心位置,进而得出其外接圆.解答:解:(1)由题意得:三角形的三边长分别为:4,4,4;3,4,5;即不同分段得到的三条线段能组成2个不全等的三角形,如图所示:(2)如图所示:当三边的单位长度分别为3,4,5,可知三角形为直角三角形,此时外接圆的半径为2.5;当三边的单位长度分别为4,4,4.三角形为等边三角形,此时外接圆的半径为,∴当三条线段分别为3
6、,4,5时其外接圆周长为:2π×2.5=5π;当三条线段分别为4,4,4时其外接圆周长为:2π×=π.点评:此题主要考查了三角形外接圆的作法和三角形三边关系等知识,得出符合题意的三角形是解题关键.4.(2014•甘肃白银、临夏,第21题8分)如图,△ABC中,∠C=90°,∠A=30°.(1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);(2)连接BD,求证:BD平分∠CBA.考点:作图—复杂作图;线段垂直平分线的性质.专题:作图题;证明题;压轴题.分析:(1)分别以A、B为圆心,以大于AB的长
7、度为半径画弧,过两弧的交点作直线,交AC于点D,AB于点E,直线DE就是所要作的AB边上的中垂线;(2)根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角的性质求出∠ABD=∠A=30°,然后求出∠CBD=30°,从而得到BD平分∠CBA.解答:(1)解:如图所示,DE就是要求作的AB边上的中垂线;(2)证明:∵DE是AB边上的中垂线,∠A=30°,∴AD=BD,∴∠ABD=∠A=30°,∵∠C=90°,∴∠ABC=90°﹣∠A=90°﹣30°=60°,∴∠CBD=∠ABC﹣∠ABD=60°﹣30°=30°,∴∠ABD=
8、∠CBD,∴BD平分∠CBA.点评:本题考查了线段垂直平分线的作法以及线段垂直平分线上的点到线段两端点的距离相等的性质,难
此文档下载收益归作者所有